WL-TR-96-1022

GRAPH TRANSLATION TOOL (GRTT)
USER’S MANUAL

Methodology
Remventmg
Electronic
Design

CHRISTOPHER ROBBINS Archhocturo infrastructure

ARPA o Tn-Serwce

APRIL 1996

FINAL REPORT APRIL 1996

Approved for public release; distribution unlimited

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE MATERIEL COMMAND
WRIGHT-PATTERSON AIR FORCE BASE, OH 45433-7623

19960722 08/

THIS DOCUMENT IS BEST
QUALITY AVAILABLE. THE COPY
FURNISHED TO DTIC CONTAINED
A SIGNIFICANT NUMBER OF
PAGES WHICH DO NOT
REPRODUCE LEGIBLY.

NOTICE

When Government drawings, specifications, or other data are used for
any purpose other than in connection with a definitely Govermment-related
procurement, the United States Government incurs no responsibility or any
obligation whatsoever. The fact that the government may have formulated or
in any way supplied the said drawings, specifications, or other data, is not
to be regarded by implication, or otherwise in any manner construed, as
licensing the holder, or any other person or corporation; or as conveying
any rights or permission to manufacture, use, or sell any patented invention
that may in any way be related thereto.

This report is releasable to the National Technical Information Service
(NTIS). At NTIS, it will be available to the genmeral public, including
foreign nationms.

This technical report has been reviewed and is approved for publica-

tion.
i ot =2
GARY FEZﬁER, Prgject Engineer DAVID A. ZANN, Chief
Computer Aided Engineering Tech Sec System Technology Branch
System Technology Branch System Concepts & Simulation Div

}/@@1 £y. eec
STANLEY E. WAGNER, #hief

System Concepts & Simulation Div
Avionics Directorate

If your address has changed, if you wish to be removed from our mailing
list, or if the addressee is no longer employed by your organization please

notify WL /AAST-1, WPAFB, OH 45433- 7623 to help us maintain a current
mailing list.

Copies of this report should not be returned unless return is required by
security considerations, contractual obligations, or notice on a specific
document.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments re:
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate 7o

reviewing instructions, searching existing data sources,
arding this burden estimate or any other aspect of this
¢ iInformation Operations and Reports, 1215 Jefferson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and t0 the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, OC 20503.

2. REPORT DATE
APRIL 1996

1. AGENCY USE ONLY (Leave blank)

3. REPORT TYPE AND DATE
FINAL APRIL 199

S COVERED
6

4. TITLE AND SUBTITLE

C
GRAPH TRANSLATION TOOL (GrTT) USER'S MANUAL PE
PR
6. AUTHOR(S) TA
CHRISTOPHER ROBBINS WU

5. FUNDING NUMBERS

F33615-94-C-1559
63739E

A268

02

19

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

MANAGEMENT COMMUNICATIONS AND CONTROL, INC.
2000 NORTH 14th STREET, SUITE 220
ARLINGTON, VIRGINIA 22201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

AVIONICS DIRECTORATE

WRIGHT LABORATORY

AIR FORCE MATERIEL COMMAND

WRIGHT PATTERSON AFB OH 45433-7623

10. SPONSORING / MONITORING
AGENCY REPORT NUMBER

WL-TR-96-1022

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE: DISTRIBUTION IS
UNLIMITED

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This document describes the use of the Graph Translation- Tool (GrTT), a software
program for translating a signal processing graph, expressed in the Processing
Graph Method (PGM), into Ada source code that implements the signal processing

embodied by the graph.

PGM is the Navy's standard for signal processing

specification methodology, developed to provide a programming environment for signal

processing graphs for the AN/UYS-2

14. SUBJECT TERMS

Graph Translation Tool, Processing Graph Method, AN/UYS-2

15. NUMBER OF PAGES
55

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19.

SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

SAR

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

Graph Translation Tool (GRTT) Final Report

Contents

Introduction

Autocoding Overview

Role of Graph Translation Tool (GrTT) in Autocoding

GrTT Concept of Operation

SPGN for Range and Azimuth Partitions

SPGN for the I0_Board Hardware Partition Graph
10_Board Behavior Model

Software Allocation Graph and Equivalent Application Graph
Behavior Models for Range and Azimuth

Test Environment for Range and Azimuth

Graph Translation Tool (GrTT) User’s Manual

it i

8

12

Attachment 1

Attachment 2

Attachment 3

Attachment 4

Attachment 5

Attachment 6

Attachment 7

GrTT - Graph Translation Tool
Final Report

Introduction

The Graph Translation Tool (GrTT) is a member of Management
Communications and Control, Inc.'s (MCCI) autocoding toolset. Autocoding
provides the hardware/software codesign process the means to rapidly realize
implementations of the codesign software architectures. MCCl's autocoding
tools automate translation of software architecture specifications to designs,
their behavior models, and their implementations. The toolset supports
behavior mode! generation, functional and performance hardware/software
cosimulation, unit testing, and complete application load image specification.
The tools support an open application programmer's interface to the codesign
process. Autocoding tools support a major objective of the codesign process
which is to provide a seamless translation of applications from math tool level
functional algorithm specifications to target architecture load images.
Autocoding technology is directed at reducing the labor content of software
design and coding, enabling rapid development of the software elements of
application specific signal processing systems.

GrTT provides the capability to generate behavior models of the
hardware/software codesign partitioning. GrTT translates both software and
hardware partition data flow graph specifications to behavior models that may
be used for requirements validation and test vector generation in support of unit
testing. This technical report on the GrTT development project describes both
the tool and its role in the autocoding process within the Lockheed Martin
ATLeCamden RASSP Enterprise System. The report includes:

* a description of the autocoding process,

« a description of the role GrTT plays in the autocoding process,

« the GrTT concept of operations including the architecture of the tool
and its functions, and an example of its use

« the user's manual

Examples of Ada behavior models generated by GrTT are included as an
attachment to this report.

Autocoding Overview

The autocoding toolset provides automated assistance for realizing top level
software designs from architecture and signal processing data flow graph
specifications, and it fully automates detailed software design and coding.
Figure 1 illustrates a notional HW/SW codesign process. The process provides
for (1) system signal processing and control functional definition; (2)
architecture definition; (3) automated application software detailed design and
coding; and (4) software integration and test. These steps include domain
engineering activity, where processing function, control, and architecture

Management Communications 1 GITT Technical Report
and Control, inc.

Anatysis and
Specification

havior Modeling
:IMixed Level Si

uncuonal

Process Control | Equivalent &Partition

{PARTITIONING H o o ration
Behavior Modeling

] HW DEVELOPMENT :
%] RTL/Logic Level Simutation
| Detailed Simulation

1 SW DEVELOPMENT
-] Panition A

| €quivalent Graph Autocoding |
nit Testing

Figure 1. - HW/SW Codesign Process

specifications are developed, and architecture implementation activity at the
modeling, verification, detailed design, and coding levels. Autocoding tools are
focused on the traditionally labor intense behavior modeling, software
verification, software detailed design, and software coding activities.
Architecture specifications are automatically translated into executable partition
and equivalent application specifications in response to the domain engineer's
partition and control parameter specifications. Behavior models are created
and functional requirements captured by architecture partitions are validated.
Codesign performance is simulated. Performance estimation feedback is
nearly instantaneous and performance validation via architecture simulation
rapidly follows. Verified software partition specifications are automatically
translated to source code for the partition executables. Verified software
equivalent application specifications are automatically translated to source
code and data structures by which the run-time system controls the execution of
the equivalent application specifications.

The autocode toolset provides an open application programmer's interface
(API). Figure 2 illustrates the elements of this open API. The algorithm
functionality is captured in Programming Graph Method (PGM) data flow
graphs. PGM is a Navy developed standard. PGM graphs exist in iconic and
notational form. PGM supports specification of full system data flow and data
flow control. Processing functions are specified by graph nodes. Queues
specify data flow between processing nodes. Formal queues and variables
may be externally controlled. A command message interface to the graph
provides the control interface. Functional process control requirements of the
system definition are implemented as sequences of command procedures
directed by command messages. Signal processing is specified by domain
primitives which are target independent functional signal processing primitive
specifications. The autocoding toolset implements domain primitives on each
type of computational element supported in the model year architecture.
Software architectures specified using the open APl may be ported among all
model year architectures without change to architecture specification or external
controls.

Management Communications 2 GrTT Technical Report
and Control, Inc.

- "\ r - YT ~
Command Message Control Interface %GRAPH (NTERCEPT Domain Primitive
s VAR= DET_THRESH: DFLOAT, Processing Specification
Create DETECT_THRESH : DFLOAT
Destroy (P 7 :
ittt INPUTG PGM Graph Data Flow Specification
Start Flush 1.81QiN 118108
Graph Stop, Queues Link
Reinit Unlink OUTPUT
Resume Connect .F
Disconnect ~
Add Data {1.BISAMP 2 NODE
Read (FFT
- (1.8ieFC vy PRIMITIVE = D_FFT
VO Process g = n-819 PRIMIN=N
Stop Variabi Create) 11-B1GRC 'l‘:’:
ariables Destroy
read VAR (O EAVI BOv
\ wite J |acro X
%*GIP (O [1-BOAVE THRESHOLD =T
N PRIMOUT =Y
) _—
CETPWR .
— - ~ [3.81QDIF!)
PGM Graphical Syntax
* Queues specifying topology and data token flow -
Modes, Formal and Local, Families {8 BJOAFT
« Nodes specifying process/graph interfaces) ovaR. A
Ports, Valves, Node Execution Parameters, Families Fovan s
* Primitives {1.8.1..8Y0COM
Primitive Controls
* Subgraphs
11.8.1. BIQPEAK
s Controls
Graph Instantiation Parameters, Variables, Q!
Formal and Local, Families v
QOFOUT
+ /O Procedures
\. — a
\ S

Figure 2. - Open Application Programmer's Interface

Correct by construction software development disciplines are incorporated into
the codesign process. Applications are specified and autocoded using the
elements of an extensively tested domain primitive software library. These
elements are assembled into executable form using mature PGM data flow
rules. Validation and/or unit testing activities are incorporated at each stage of
codesign to ensure compliance with functional and performance requirements.
The autocoding toolset supports the goal of uneventful integration and testing.
GrTT is the autocoding tool that most directly supports unit validation. Behavior
models are generated for each application software or hardware application
partition. Execution of the behavior models on test vectors used in the
functional design and simulation of the elements of architecture design validate
all of the requirements captured in the top level software design and hardware
partition specifications. Test vectors from validated partitions are then reusable
to ensure valid implementation of the software architecture specification at
every level of the autocoding process.

The autocoding toolset automates system realization of software specifications.
It provides tools for validation of codesign architecture specifications and
verification of automatically generated implementations of their software
elements. It provides automation support to design realization of the application
software at architecture verification and detailed design levels of the codesign
process. This enables rapid realization of software/architecture virtual
prototypes, unit testable application modules, and specifications for compilable
system load images on supported targets. Autocoding tools provide the

Management Communications 3 GrTT Technical Report
and Control, Inc.

application domain engineer with the power to expand the number of
application/architecture specification variations that can be evaluated within
real project budgets. Superior systems and reduced development and/or
recurring costs must follow.

Autocode Tools Automate Software Design Realization and Software
Architecture Verification. Equivalent and partition graph generation tools
automate the generation of top level software designs from hardware/software
architecture specifications. As illustrated in Figure 3 hardware/software
architectures are specified to the software verification process as PGM
application data flow graphs with a candidate architecture file and
corresponding partition lists. Partition lists map application graph partitions to
architecture processors. A top level software design is generated from these
inputs. The top level design consists of (1) an equivalent application data flow
graph which specifies the executable image of the application, and (2) a stand-
alone partition graph for each equivalent node specifying executable
processing. Both outputs may be used to verify requirements capture and
performance of the top level software design. Behavior models may be created
for each partition using the GrTT tool. The executable procedures from the
behavior models may be encapsulated as in the equivalent application graph
nodes for functional modeling of the executable image specification. When

%GRAPH (INTERCEPT, 1
VAR= DET_THA

DETECT_THRESH{ [w sw RECTO %GRAPH (NTERCEPT EQUIVALENT
Y VAR = DET_THRESH: DFLOAT,
INPUTQ = QINDMOD] -
T : DFLOAT
1 BIOIN - FLOAT I DETECT_THRESH : D
e i AWZITQ= QINDMOD : CFLOAT.
OUTFUTQ = %oblg':: [1..81QIN : FLOAT
QPSDN I BN Tas | %GRAPH (partitons
QPSDI [1.810AC GIP =NT1:INT,
{1..8)81 gy [Y(2048). NT2:INT,
[1.81Q0UT : INT I QDETOUT At : DFLOAT ARRAY (NT1),
B : QPSDNUM A2 : DFLOAT ARRAY (NT2)

)

%VAR (DEMOD_NP :

NQPSDINDX INPUTQ = QSAMP : FLOAT
[1.8.1.8)Q OUTPUTQ = QAFT : CFLOAT

)
%QUEUE (QRC : DFLOAT)
MOD_N: 1 %QUEUE (QAVE : FLOAT)

%GIP (DEMOD_N: IN]

:%GI Candidate Architecture Configuration Flle P %ogglés(L%FRFLOAT)
I PRIMITIVE = D_MAG
RIM_IN =524,
(FIR2 ASIC — __l QSAMF:RESHOLD =524
%GIA e PRIM_OUT =QRC
b] _l
%GIH n g JiaPartion s 4 DDE (FIR_AVE
— (= S e
cs cs Asic 1] sw partition s T UNUSED,
1] {|ospcs-1 T
= Tavioni] Processor 01 N
L OQUESC ylél?AVE THRESHOLD =524
DIFF PRIM_OUT =QAVE
FFT8
: FLOAT) l
Figure 3. - Equivalent and Partition Graph Generation
from Architecture Specifications
Management Communications 4 GrTT Technical Report

and Control, Inc.

-accepted, the partitions specified may become inputs to the detailed design

level autocode tools that generate application and executable DSP program
detailed designs.

Using the equivalent application generator tool, the software designer
generates equivalent and partition graphs from the software architecture graph
and input software partitions. Partitions may be identified by the partition lists
received from the architecture specification tool. Additionally, partitions could
be externally generated by some other method or otherwise specified by the
autocoding user. Performance estimates are generated consisting of execution
time estimates for each partition and equivalent graph execution time and data
transfer requirements. Application specifications that will not translate to
efficient run-time images may be quickly rejected. Acceptable application
designs may be passed to the architecture simulation tools for detailed
performance verification. The software designer may iterate partition
subdivision and corresponding data flow control parameterization to obtain a
software design for a given architecture specification that best meets
requirements for minimum resource utilization, load balancing, latency, and
memory constraints.

Behavior models are created for each partition graph generated in the top level
design process with the GrTT tool. Behavior models provide the functional link
between functional behavior of the algorithm as validated on a functional
simulator and the behavior of the CSUs of the detailed design. GrTT generated
behavior models are the executable requirements specifications for the
autocoded implementation of the design's partitions on the target DSP
processors.

Performance simulation of the top level software design will be supported by the
architecture simulation tool. Partition timing estimates of each equivalent node
will be passed to the architecture simulator for hardware/software performance
simulation. At the completion of architecture/software design, top level
specifications exist from which executable code targeted for the embedded or
candidate high performance architecture may be automatically generated. The
software verification level autocoding tools automate the generation of
equivalent and partition graph specifications. The error prone, laborious, hand
coding of top level specifications will be eliminated. Codesigns may be realized
at the rate at which designers can make design decisions and evaluate their
consequences permitting more design options to be examined..

Autocode Tools to Automate Detailed Design and Coding. Detailed design
level autocode tools include the Multi Processor Interface Description (MPID)
Generator and the Application Generator. These tools generate compilable
images of partition and equivalent graph elements of the top level design. The
role these tools play in detailed design is illustrated in Figures 4 and 5.

MPIDs are compilable programs that implement the processing specified by the
partition graphs. Both transient, or start up, and cyclic behavior of the partition
graphs is preserved in the translation to compilable form as is the partition

Management Communications 5 GrTT Technical Report
and Control, Inc.

GP o NT{: NT.Oriton Graph MPID ‘C'Source Code
*NT, 7 PARTITIONS - Auto Code Generator ~
SPGN Version 0.1 - 07119584 */
[1]0BAMP main
GV Sets t
GV set { int NT;
NT1=19 nt ez
NT2 =6 double AL
At:Range= 1 {00 dSiupasos
BAY |A2=(60f COMPLEX_RLOAT
-1.0E0, *QAFTQ005;
-1.0E0-1.0E0] . . L
\
Single Node Graph N
Unit Test B
\. - J

Figure 4. - MPID Generator

graph's response to all enumerated values of controls. At its ports, the
execution behavior of the compiled MPID will be identical to the functional
behavior of its partition graph specification. MPID Generator will generate 'C'
source code implementing the partition's processing specifications utilizing
calls to the target processor's math library. A memory map converting all
partition internal queues and variables to static buffers is generated. MPID
Generator is supported by a domain primitive database which provides
constraint, error condition, target specific state machine behavior, and target
performance data for each domain primitive. MPID source code will be made
as efficient as possible by maximizing in-place execution of target math library
calls and minimizing non-library call code to that needed to interface to the
equivalent application graph and to respond to external controls.

In addition to source code for the executables, MPIDGen produces detailed
performance estimates and single node equivalent graphs specifying the MPID
as the primitive. The detailed performance estimates are used to validate
software verification performance estimates. The single node graph supports
unit testing. Unit test applications are generated using the single node
equivalent graph. Test vectors generated by the GrTT behavior model for the
partition are processed to validate partition translations. Side-by-side execution
of the GrTT behavior model and single node test graph is possible supporting a
thorough validation of MPIDs under representative data and external controls.
Because of PGM's determinism, validation of each partition implies validation of
the full application.

The Application Generator translates the equivalent application graph with its
set of MPID source files into data structures that are used by the run-time system
to create an executable image of the application as distributed tasks on the
target processors. The run-time data structures incorporate the MPIDs as
executable elements of the tasks and provide other memory management and

Management Communications 6 GrTT Technical Report
and Control, Inc.

EQUIVALENT

GRAPH J HGRAPH (NTERCEPT Application

VAR = DET_THRESH: DRLOAT,
DETECT THRESH DROAT Equivalent
Graph

NPUTG= QNDMOD :CRLOAT,
(18N : RLOAT

OUTPUTQ= QOUTPSD : FLOAT V_ARRAY(2048),
CQDETOUT : FLOAT V_ARRAY(2048),
QPSONUM : INT,

QPSDNDX : NTV_ARRAY(2048),
[1.8, 1.2J0PEAK : NT

%GIP (DEMOD_N: INT INITIALRE TO 713)
%GIP (PICK_N: INT INITIALRZE TO 64)
%AIP (PICK_M: INT INITIALZE TO 63)
%GIP(FAR1_NT: NT NITIALZE TO 17)

AR
OR

7" PARTITIONS - Auto Code Generator -
Version 0.1 - 07119/04 */

main MPID
{ Executable

int *NT1; Source Files
nt *NT2;
double "Al;
double *A2;
float *QSAMPQO04;
COMPLEX_FLOAT "QAFTQO0S:
double dfA_N2{6]:
float fA_N2[6L
nt i_N2,j_N2,k_N2, M_N2. L_N2:

double dU_N?[B]:

Application Load Image Specification

Application Data Structures
Runtime Support

Kemel OS

Primitives

BIT Applications

Figure 5. - Application Generator

execution control information needed to realize a run-time image of the
equivalent application graph.

Reusable run-time support is provided as part of the application. Figure 6
illustrates the organization of the run-time system into user-supplied signal
processing and BIT applications, reusable application and load managers, and
operating system kernels. Application data structures provide the interface to
the graph manager. The graph manager also controls the command message
port. In response to command messages from the Command Program
Graphical User Interface (CP GUI), the graph manager instantiates applications
as tasks, connects them to data sources and sinks, initiates their processing,
and applies all external controls to modify their processing. BIT applications will
be handled similarly. Interfaces to operating system software are low level,
simplifying the port of the run-time support to new model year computational
elements.

A make file is generated by the Application Generator that specifies the load
image at the source and data structure level. This make file specifies the source
code and executable files containing application data structures, MPIDs, run-
time support, and BIT applications. Libraries for kemel OS and target primitives
are also specified.

Management Communications 7 GrTT Technical Report
and Control, Inc.

Applications Applications

ication g
interfaces Apphcaton

BIT

Graph Manager

n2

Kernel OS Kemel OS e e o8 ¢ o » o Kemel OS

Primitives Primitives Primitives

Figure 6. - Run-time Support
Autocoding Tools Reduce Application Engineering Costs. The MCCI

autocoding tools will reduce the amount of labor required to generate top level
software designs from architecture specifications and detailed designs
implementing them. Manual coding will be eliminated altogether. Automated
generation of software designs from architecture specifications will allow
meaningful evaluation of many alternate designs at a fraction of the time
currently required to design signal processing systems. Automated detailed
design and code generation will provide testable unit and system
implementations of software designs virtually instantly compared to hand
coding approaches. Systems representing a thorough design space trade off of
alternative application specifications, hardware and software architecture
specifications, and lower level partitioning and parameter trades will be
produced rapidly. Reusable run-time support avoids an expensive
development effort. Reuse of the run-time system provided as part of the reuse
library and model year architecture will eliminate the user's need for expensive
run-time scheduling and control support development for their software designs.
The open architecture supports legacy code capture, model year application
porting, and application reuse. As enterprises gain legacy, application reuse
opportunity will increase.

Role of Graph Translation Tool (GrTT) in Autocoding

GrTT is an autocoding tool that will translate Processing Graph Method (PGM)
graphs to Ada behavior models. GrTT may be used to create behavior models
of either hardware or software partitions of PGM data flow graphical application
specifications. The functional behavior of the model will be identical to the
graph partition represented. Identical outputs will be produced by either model
execution or data flow execution of the processing graph on a common input
data set. A dynamic view of model execution is supported thus providing
visibility of the modeled graph's execution behavior.

Management Communications 8 GrTT Technical Report
and Control, Inc.

Implementation of the RASSP HW/SW codesign process by the Lockheed
Martin ATLsCamden RASSP Enterprise System utilizes PGM for data flow
specification of the application. Processing within the PGM graph's nodes is
specified by domain primitives. Domain primitives are target independent
signal processing and data flow control function specifications. Their use in the
PGM application specification provides an open application programmer's
interface (API) to the team's tools implementing the architecture selection and
design processes. Domain primitive graphs are partitioned by the architecture
tools into hardware and software allocations. The allocations are further
partitioned to become either hardware component partitions or software
partitions. Software design tools will generate stand-alone PGM graphs for
each partition. GrTT may be used to generate partition behavior models for
each hardware or software partition.

PeGRAPH (paniions
GIP =NT1:INT,
NT2:INT,
A1 :DFLOAT ARRAY (NT1),
A2 : DFLOAT ARRAY (NT2)
INPUTQ =QSAMP : FLOAT
OUTPUTQ =QAFT : CFLOAT,
)
PoQUEUE (QRC : DFLOAT) —
PoQUEUE (QAVE : FLOAT) Ao Code Generabor Behavior
PQUEUE (QDIFF : FLOAT) 7 PARTITIONS - Auto Code Generator - Varsion 0.1 - 07 —. Verion 0.1 12/5/94 Model
PoNODE (MAG main) DSP procedure Parition_3 is oqe!
t p R A Access_Typs =
PRIMITIVE = D_MAG w O o Yoo e LOAT Veckr Typa (1 5261
PRIM_IN =524, [NT2 Program QroQ : DFLOAT_Type_package DFLOAT_Veckr_Access_Type =
QSAMP double ::2 DFLOAT Type, Package.DFLOAT Vector_Type (1.52¢);
double QaveQ : FLOAT_Type_packaga FLOAT.Vecior_Acosss_Type;
THRESHOLD =524 Soat *QSAMPO0O4; QdHQ : FLOAT_T;:MN.OAQ_V:M_T?:
PRIM_OUT =QRC COMPLEX_FLOAT “QAFTQ0OS; QaRQ : CRLOAT_Type_package.CFLOAT Vacior_Access_Typs:
) Al_Var :DFLOAT_Type_Package.OFLOAT_Vector_Acosss_Type;
L.NODE (FIR_AVE :‘ﬂc dIA_Nefer AZ_Var :DFLOAT_Type_Packagea DFLOAT Vector_Access_Typs;
PRIMITIVE = D_FIR1S b . LN2 IO2 M, L NZN_Adke ; DINT_Type_Package DINT._Vector_Accass_Type :s
PRIM_IN =524, double SANYS, DINT_Type_Package DINT_Vector_Type {1 .1}
_| = . fioat TA_NDSL N2MX_Addr : DINT_Type_Packange.DINT_Vecor_Access_Type '«
UNUSED, int N3, | N3 KNG, MNG, LNS; DINT_Type_Package DINT Vector_Type (1. 1%
NT1 P LN LG NZNT_Addr : DINT_Type_Package. DINT_Vecsor_Acoass_Type i
P t wo_NA; DINT_Type_Package DINT_Vector_Type (1. 1)
f READ_VAR {A2,8,0,6240) N2D_Addr : DINT_Type_Package DINT_Vectr_Access_Type ie
At, m&vn: (A1,6,0,6304); DINT_Type_Package DINT_Vacior_Type (1. 1%
o, -
READ_QUEUE (OBAMPCDO4, 524, 0, 2006); -
THRESHOLD = §24 $tute (4200, 266, 256 & ! e :
- vabe (2096,1,0,1, 624} A1_Var:w new OFLOAT_Type . NT1);
)P RIM_OUT =QAVE vapdp (0.1, 03001, 524); A2_Var:w new DRLOAT_ Typ e L NT2);

Figure 7. - GrTT Behavior Modeling of PGM Graphs.
GrTT produces an Ada behavior model of a DSP program
translated from a PGM graphical specification.

Figure 7 illustrates the partition modeling concept. An application partition
graph is shown on the left in both iconic and notational form. Each node has its
unique name above the line and specifies the domain primitive implementing
the node below the line. Queues represent FIFO buffering of the data between
the nodes. Node execution parameters associated with the node ports that are
linked to queues specify a thresholding criteria for node execution, data
amounts to be read, and data amounts to be consumed from the queues upon
node execution. Data amounts produced onto output queues per node
execution are functions of the domain primitive controls, read amounts, and

Management Communications 9 GrTT Technical Report
and Control, Inc.

data modes. Node execution parameters, process controls, and parameters
may be made run-time variables and provide the capability to externally modify
graph execution. Data flow execution, execution of nodes when thresholding
criteria are met, guarantees determinism or causal behavior of the graph. GrTT
accepts application partition graphs in their notational form plus sets of
enumerated values of graph variables, and it produces an Ada procedure that is
the behavioral equivalent of the input graph. Graph variables that cause the
input graph to alter data flow, node firing rates, or primitive processing will
cause identical behavior in the behavior model that GrTT produces.

GrTT consists of three major objects and is supported by the domain primitive
database. The translation process these objects implement is illustrated in
Figure 8. The domain primitive database provides support for both target
independent and target dependent implementations of partition graphs
specified with domain primitives. The SPGN parser accepts a partition graph
SPGN file and enumerated graph variable (GV) sets. The parser creates a
validated graph object, a data structure representing the input graph. Error
checking detects any invalid SPGN. All values of variables affecting primitive
execution are validated against constraints and requirements of the domain
primitives. The graph object represents a flattened graph in which all
subgraphs and family constructs have been expanded. GrTT's graph analysis
object creates a state machine behavior specification from the graph object and
behavior data provided by the domain primitive database. Any behavior error
conditions are determined at this point. An example of such an error might be a
graph with a periodic execution sequence that would be too long to code or
would require too large a memory map. This long periodic execution sequence
is normally caused by an ill advised combination of node execution parameters.
GrTT's autocoder object generates an Ada procedure implementing the state
machine specification for all GV value sets. This Ada procedure becomes the
primitive for an equivalent node replacing the partition in the original domain
primitive application. A single equivalent node graph containing the procedure
as its primitive is also generated by the autocoder object. This single equivalent
node graph is useful for unit testing.

The behavior models generated by GrTT may be used to fulfill several important
HW/SW codesign functions. GrTT software partition behavior models may be
used to validate target specific autocoded executables. The single node graph
with a GrTT behavior model embedded as its primitive may be used to validate
the partition translation and generate test vectors for other target specific
translations of the team's autocoding process. GrTT behavior models may be
embedded as equivalent nodes' primitives in an equivalent graph generated
during software architecture verification in the team's codesign process.
Equivalent graph execution using GrTT behavior models will support validation
of application requirements capture through the translation process. Since Ada
syntax is used in VHDL, Ada procedures implementing behavior of PGM graph
partitions will be common for hardware and software implementations.
Because of this, Gr'TT behavior models of hardware partitions may be
embedded as the procedural part of a VHDL behavior architecture, thus

Management Communications 10 GrTT Technical Report
and Control, Inc.

SPGN Fil

e %GRAPH (partition3 pesewew "
GIP =NT1:INT, & :
NT2:INT,
A1 :DFLOAT ARRAY (NTY,
CONSTRAINTS/ A2 : DFLOAT ARRAY Sets

NPUTQ =QSAMP : FLOAT

ERROR CONDITIONS QUTPUTO = GAFT : CFLOAT

e —————— 1 SPGN %OLEUE(DRC:DFLOAT)
%QUEUE (GAVE : FLOAT,
PARSER HOURUE LOOIFE AL OAT)

Behavior

Validated Specification
o Graph —=

64
Object |=2 “
4

BEHAVIOR
— GRAPH

ANALYSIS UNUSED,

READ QSAMPQO04 2096

PRMITIVE: MER_MAG
Y WRITE wis 2048

> AL, Y READ wis 4/ 8

’y‘ Y READ OSAMPQOO4 47 O
CODE PRNLOUT ‘_'”Q‘;EVWE Y WRITE CN1 2096
Y CONSUME QSAMPQOOs 2096

FRAGMENTS) Y READ C.N1 4/ 0

Y WRITE QRCQ001 4192

AUTOCODER Ada Y CONSUME C.Nt 2096

Behavior PRIMITIVE: MER_AIR
Y WRITE cN2 4152
Model Y READ QRCQ001 4/

FPARRTITION S 4/
|- Auto Code Generator 4/
- Version 0.1 125594 4/
procedure Partition_3 is 4/
QeampQ :FLOAT_Typo_packege FLOAT Vector_Accoss_Typo = a7
RLOAT_Typo_Peckage FLOAT. Vecter_Type (1..524); 4/

QroQ : DFLOAT_Type_packege DFLOAT_Vector_Access_Type =

\

coo0oo©

DRLOAT_Type_Package DRLOAT_Vedtor_Type (1 .. 524);
QaveQ :FLOAT_T) package FLOAT_Vi _Aocess_Type,
DO M Al N Otﬂva H R.OAT_Ty;:‘_padu;FLOAT_Vo:::A&a;.&_Ty:?
QaRQ :CFLOAT Typo_package CFLOAT_Ve Access_Type:
P R l M I TI V E Al Ve OFLOAT_m_Pm’;.DFLOAT_‘fo:;_}o::s_'YY;e:

D AT A B AS E A2_Var :DFLOAT_Type_Package DFLOAT_Vector_Access_Type;

N2N_Addr : DINT_Type_Package. DINT_Veclor_Access_Typo =
DINT_Type_Package DINT_Vecior_Type (1. 1);
N2MX_Addr : DINT_Typo_Package DINT_Vector_Access_Type =
DINT_Type_Package DINT_Vector_Type (1..1);
N2NT_Addr : DINT_Type_Package DINT_Vector_Access_Type =
DINT_Type_Package DINT Vector_Type (1..1);
N2D_Addr : DINT_Type_Package.DINT_Vedtor_Accoes_Typo =
DINT_Type_Package DINT_Vactor Type (1..1);

pogin

A1_Var :m new DFLOAT_Type_Package.DFLOAT Vector_Type (1 ..NT1
A2_Var := new DFLOAT_Type_Package. DFLOAT Vector_Typo (1 ..NT2)|

Figure 8. - Graph Translation Tool Architecture and Domain Primitive
Database Support. Ada behavior models are autocoded intermediate
behavior specifications translated from PGM graphical specifications.

automating generation of VHDL behavior models from graphical architecture
specifications.

Figure 9 illustrates the use of a GrTT generated behavior model of a PGM graph
partition in validating MPIDs, the target specific partition executables generated
by MCCl's autocoding tools. A GrTT behavior model is generated from a
partition graph. Input vectors are generated or captured from a higher level
algorithm design tool; e.g., PGSE or MATLAB. The behavior model is executed
on the captured test vectors and output vectors produced. A test support utility
executes the behavior model as the primitive of a single node test application.
Input and output vectors are shown above the single node graph GrTT
behavior model test application. Input and output vectors are generated

Management Communications 11 GrTT Technical Report
and Control, Inc.

% PRAGMA TAPS [1]QRC,
[1]JQAVE, [1]QDIFF

[1JQDIFF

8 8 8
;:»
g
=
=g
=g

p!éiﬁégo

8

Figure 9 - GrTT Behavior Model Execution
Input and output test vectors and internal queue content
of the behavior model are shown

for use in MPID unit testing. Target specific MPIDS must produce identical
output vectors from common input test vectors within precision error limits. The
internal partition queue contents are made visible at each stage of behavior
model execution by the behavior model test support. This provides the user
with a virtual oscilloscope view of internal partition behavior. Internal test
vectors are saved and used for debugging target specific MPIDs.

GrTT Concept of Operations

The GrTT tool generates Ada behavior models for DSP application top level
design partitions and allocations. Behavior models provide validation of
algorithm functional requirements capture by the top level software design.
Behavior models are used to validate requirements capture in top level
hardware and software partition specifications. Comparison of the behavior
models functional behavior with that of the high level functional simulation of the
processing algorithms validates the top level specification. The behavior
models then form executable behavior requirement specifications for the
corresponding partition of the top level design. Behavior requirements
specifications embodied in the behavior models are used at successive stages

Management Communications 12 GrTT Technical Report
and Control, Inc.

of autocoding an application. In successive levels of the autocoding process,
the behavior of the autocoded unit of an application is compared with that of the
behavior model. Execution behavior; i.e., the sequence of primitive executions
and the intermediate queue states, must correspond identically with that of the
behavior model. Numerical results at each stage of autocoded unit behavior
must correspond with the comparable results within precision limits.
Applications in which each executable unit has been validated with respect to
its behavior model will execute correctly, implementing the behavior that is the
union of all model's behavior. If the behavior of each model has been verified
as capturing the behavior requirements of the application architecture and all
elements of the architecture specification are represented by a behavior model,
the end application will correctly and fully implement the requirements.

The concept of operations of GrTT is illustrated by walking through the
autocoding of the RASSP Program SAR benchmark. This application is being
used by the Lockheed Martin RASSP team as the benchmark to measure tool
performance and contribution to achieving program productivity enhancement
goals. A graphical specification of a single polarization of the full application
was developed by the Lockheed Martin ATLsCamden RASSP prime and
distributed to subcontractors for use as a common benchmark for use in
developmental testing in the RASSP Program. GrTT is used at each stage of
translation of the application architecture specification into executable code for
a target architecture. Validation of the translation and verification of
requirements capture from the previous stage are illustrated. GrTT's
contribution to productivity enhancement is emphasized.

Hardware/Software Architecture Specification. The application is specified as a
domain primitive data flow graph using the PGM formalism. The application

specification includes both hardware and software allocations. Figure 10 is an
illustration of this graph implementing SAR processing on a reduced data set,
256 azimuth resolutions for 64 range cells. Each of the square icons represents
a subgraph. The subgraphs are io board, range, and azimuth. Each of the
subgraphs are also shown in the figure. The notational form of the
specifications using Signal Processing Graph Notation (SPGN) are inciuded in
this report as Attachment 1.

The architecture specification tool generated a trial hardware architecture, an
allocation of application segments to hardware and software implementations,
and processor assignments of nodes within the software allocation. In the
benchmark, the io_board subgraph and collect node were allocated to
hardware implementations by the architecture specification tool. The range and
azimuth subgraphs were allocated to software implementations, with all nodes
within a subgraph allocated to the same processor. The architecture
specification is input to the autocoding process as a domain primitive PGM
graph of the application, a hardware architecture description file, and node
assignment lists assigning nodes to either programmable hardware nodes or
fixed function hardware nodes. Because the application architecture
specification for both hardware and software allocations stems from a common
PGM graph, the autocoding process may be used to create rapid software

‘Management Communications 13 GrTT Technical Report

and Control, Inc.

prototypes of the hardware allocations. These may be later removed from the
software architecture when hardware nodes are implemented. This was done
for the io_board subgraph and collect node in our example. Behavior models
generated with GrTT will be common to both rapid software prototypes and
hardware implementations.

sar_in

InEut_groce
io_board

[1..n_p_rangelyrange

rangei
rangej
[1..n_p_rangelyo2 [1..n_p_range]yo3
[1..n_p_range]yo1 9 M..n_p. rangelyod
azil azi2 azi3 azi4
azidj azidj azidj azidj
outi out2 out3 outd
colltor
D_FANIN

outf

\/
0ot

Figure 10. - Application Graph - Domain Primitive Graph
for Mini SAR Benchmark

Management Communications 14 GrTT Technical Report
and Control, Inc.

Autocoding Process. MCCI's top level design tool, the Equivalent Application
Generator, is used to generate allocation, partition, and equivalent application
graphs from the application architecture graph. The Equivalent Application
Generator tool is the first of the set of autocoding tools. This tool creates stand-
alone graphs from specified clusters within input PGM graphs. Nodes in an
input graph may belong to a single partition only and all nodes must belong to a
partition. Partitions may be belong to either hardware or software allocations.
Partitions are defined to the tool by listing the member nodes in each partition in
a pragma contained in the notational form of the graph. By listing each
hardware partition's nodes and all the remaining nodes in the software
allocation as a single partition, hardware partition and the full software
allocation graphs are created as partition graphs. This initial process separates
the hardware and software allocations into separate graphs that now follow
parallel paths through the hardware/software development paths of the
codesign process. Figure 11 shows the software allocation, the software
architecture graph, and the hardware partition graphs. The hardware partition
graphs for io_board and collect and the software allocation graph in SPGN form
are included as Attachment 2.

GrTT behavior models are created for each of the hardware partitions.
Hardware partition behavior models may be used as executable behavior
models for the hardware design process. Because Ada syntax and VHDL
syntax are essentially identical, the procedure part of the Ad behavior model
may be readily incorporated as the procedural body of a VHDL behavior model.
The differences between VHDL behavior models and GrTT behavior models
are in the declarations. The stand-alone test support may be used to execute
the GrTT Ada behavior model on input test vectors taken from the algorithm
functional simulation. Output vectors that match functional simulation vectors
within precision limits validate requirements capture in the PGM hardware
partition specification. The GrTT behavior model and test support may be used
in subsequent stages of hardware design to validate hardware implementation.
Test vectors generated by the model may be used at lower levels of hardware
development testing. The behavior model generated by GrTT for io_board
hardware partition graph is attached as Attachment 3.

The software architecture graph is partitioned for assignment to the processors
of the specified hardware architecture. Partitioning implements the processor
assignments received from the architecture specification tool as one or more
software partitions on the specified processor. In the benchmark, the
assignment lists and partition lists correspond with the range and azimuth
subgraphs. Stand-alone partition graphs are generated for each partition
specified. An equivalent application graph is generated in which each partition
is replaced by a single equivalent node. The equivalent node represents a
DSP program that implements partition behavior on the target DSP processor.
The GrTT behavior models will model that behavior. Figure 12 illustrates the
software allocation's partition graphs and the equivalent application graph. The
SPGN form of these graphs is included as Attachment 4.

Management Communications 15 GrTT Technical Report
and Control, Inc.

[1..n_p_rangelyrange

rangei
rangej

[1..n_p_range]yo2 [1..n_p_range]yo3

[1..n_p_rangelyo1

azi4
azidj

azi3
azidj

azi1 azi2
azidj azidj

out1 out2 out3 out4

Figure 11a. - Software Allocation Graph - Mini SAR Benchmark

colitor
D_FANIN

Figure 11b. - Hardware Partitions - Mini SAR Benchmark

Management Communications 16 GrTT Technical Report
and Control, Inc.

SENSOR_DATA

MULT_IN

FILT_IN

FIR_FILT
D_FIR1S

FILTERED_OUT

Figure 11b. - (cont.) Hardware Partitions - Mini SAR Benchmark

Management Communications 17 GrTT Technical Report
and Control, Inc.

[1..n_p_rangelyrange

npaznr nfft vm
o[N. 1..n_p_azlyo

cplex_muit
D_VMUL

[1..n_p_range,1..n_p_az]y0

p_comer_t
D_SEP
[1..n_p_az]outi
O_b1 o‘—bz
Range Azimuth Equivalent Application Graph

Figure 12. - Software Partition Graphs - Mini SAR Benchmark

GrTT is used to create behavior models of each software partition. Partition
graphs and a file of the graph value sets, the sets of enumerated values of

Management Communications 18 GrTT Technical Report
and Control, Inc.

controls for which GrTT is to create a valid behavior model are input to the GrTT
tool for each partition. Behavior models are generated. The behavior models
are executed under the test support utility using test vectors generated by the
functional simulator. Comparison within precision limits verifies requirements
capture by the partition specification and validates the model for use in target
specific MPID unit testing.

The use of GrTT to generate behavior models is illustrated in a walk through of
the translation process using the range partition graph as an example.
Required inputs to GrTT are the SPGN for the partition graph and a partition
specific Graph Value Set. The partition graph was generated from the software
allocation graph by the Equivalent Application Builder tool in SPGN notation.
As previously mentioned, the SPGN for this example is included in Attachment
1. Since no values for any parameters are required to perform the translation,
the Graph Value Set is empty (as shown in Attachment 1). The user enters the
SPGN file name and the Graph Value Set name on the command line that
invokes the GrTT tool. Details of the command line parameters are contained in
the GrTT User's Manual.

GrTT parses the SPGN representation of the graph into a set of data structures.
This first set of data structures represent a graph realization. Using the values
for required parameters as specified in the Graph Value Set, GrTT then creates
a set of data structures for each set specified in the Graph Value Set. Each of
these sets represent a graph instantiation, one instance of the graph realization.
Each graph instance is separately analyzed and a valid node execution
sequence is determined for the transient (if any) and periodic execution
behavior of the graph. The execution sequences of the graph instances are
combined into a single representation that contains logic to select the particular
instance that is to be executed based on the values of parameters that affect the
execution sequence and therefore requires a different instantiation of the graph.
Once this has been performed, the autocoding subsystem of GrTT generates an
Ada Specification and an Ada Body that implement the execution sequence(s)
of the graph instantiation(s). The code contains a call to the Ada procedure that
implements the domain primitive referenced by the node in the execution
sequence, code that selects the appropriate execution sequence for each set
specified in the Graph Value Set, code that manages the data buffers that
implement queues between nodes, and glue logic.

For the range partition, there is only one execution sequence and that is simple
in that each node executes once. The Domain Primitive execution sequence is:
D_FILL, D_VMUL, D_FFT, D_VMUL, D_FANOUT. This can be readily seen by
examining the Ada generated by GrTT (which has been included in Attachment
5).

Restrictions on graphs that are to be translated into Ada source code are
minimal. The major restrictions are:

» The input graph must be balanced.

Management Communications 19 GITT Technical Report
and Control, Inc.

* At graph translation time, there must be sufficient information to determine an
execution sequence, and the amount of data produced and consumed by each
node must be known. Values for formal GIPs and VARs, which are normally
provided at instantiation time, will be provided at graph translation time so that
these restrictions are met. This means that a graph's execution sequence
cannot be dependent on run-time data.

A secondary output of GrTT is an interface with a test environment such that the
GrTT produced procedure can be tested. The test environment contains
facilities to read input queue data from a file and to write output queue data to a
file.

The Ada behavior models generated by GrTT for the range and azimuth
partition graphs are included as Attachment 5. The Ada test programs
generated by GrTT are included as Attachment 6.

The behavior model provides both a static and a functional model of each
partition's execution behavior that may be used to validate requirements
capture by the partition graph specification. It also provides a validated
behavior model that may be used in support of unit testing the target specific
partition translations. Figure 13 illustrates the behavior of a partition graph that
the model captures. For each set of graph values, an execution sequence of
domain primitive executions is generated. The sequence will be periodic, but
may also have an initial transient sequence. Between each domain primitive
execution, the partition graph state is modeled as the the contents of circular
buffers implementing the queues. The amount of valid data and its location
within the buffer models the contents of a queue. The contents of all queues
define the graph state. The execution of a primitive transitions the graph to its
next state. This state machine behavior of the partition graphs will be common
to all target specific translations regardless of the target processor or supporting
vendor primitive library used to implement domain primitive specifications.
Values of the data at each graph state modeled may be used for functional
testing of target specific transiations. Figure 13 shows execution of the range_fft
node transitioning the behavior model to its third active state, the contents of
buffer ffto filled with active data denoting its third state, and a plot of the contents
of the ffto buffer modeling the queue contents of queue ffto after range_fft firing.
GrTT currently uses a feature called "taps" to extract and display the contents of
internal queues that are converted to circular buffers. This feature is simular to
virtual pins used in VHDL hardware modeling. The queues to be "tapped" are
specified in a pragma in the input SPGN. Tapped internal queue contents are
output as a fromal output. The internal queue "ffto" was tapped in this example.
In the planned upgrade to GrTT that will integrate it with the autocode toolset
unit tester, all internal queue contents will be automatically retrieved and plotted
during model exection.

Each partition graph with graph value sets is autocoded into source code for its
target architecture processor using the MPID generator tool. Target specific
translations implement the partition graph behavior for each graph value set
utilizing the primitives from an optimized math library supporting the processor.

Management Communications 20 GrTT Technical Report
and Control, Inc.

One or more target specific math library primitives is required to implement a
domain primitive. Execution behavior generated in the translation processor as
documentation may be compared with the behavior of the model generated by
GrTT. Execution sequences and queue states must be common. A testimage

step
fill
5
15000 -
- 10000 N FFTO, Real Data
wind
5000]
0
-5000

-10000

10000 -
FTO, Imaginary Data

5000

[SCO

-5000 4

-10000 -

-15000

| o_b1_0

e

o_bi_1

o_b1_2

o_b1_3

Figure 13. - Range Software Partition Graph Behavior Model -
Mini SAR Benchmark

Management Communications 21 GITT Technical Report
and Control, Inc.

is automatically generated for unit validation testing. This is a single node
application with the MPID as its primitive. A unit tester is used to test the MPID.
This utility executes the single node on a file of test vectors specified by the
user. Queue contents are reconstructed from the memory map of the MPID at
each execution state. Comparison with the queue contents of the MPID with the
corresponding queue state of the behavior model will quickly validate the target
specific translation. The GrTT stand-alone test utility and the MPID unit tester
will be integrated in a future release of the autocoding tools supporting side-by-
side execution of the behavior model and test image. Figure 14 illustrates the
output of MPID unit testing and the comparison of MPID output vectors with
GrTT behavior model vectors generated by the GrTT Test Utility .

The Application Generator tool is used to specify a complete software system to
the compiler for the target architecture's programmable processors. The
equivalent application graph SPGN file, MPID source files, and hardware
description file are translated into an application configuration file. The
configuration file is the run-time image used by the run-time support system to
create an instantiation of the application. A make file specifying the software
system to the target compiler is generated. The file contains the configuration
file, MPID source files, primitive object code, operating system, and BIT
applications. In test and integration, functional behavior of the application is
verified by executing the graph on test vectors used in earlier stages of the
autocoding process. Comparison of the application's formal queue contents
with the output generated by GrTT behavior models validates the end product of
the autocoding process.

A major element in achieving a 4x productivity improvement in the RASSP
process is following a correct by construction software development
methodology which is embodied in the Lockheed Martin RASSP design
methodology. Radical reduction of TAF, test and fix, activity in hardware
development, and software debugging in software implementation are a major
part of achieving these goals. Elimination of this often very expensive fixing up
activity at the end of a codesign effort is to be achieved by several intermediate
stages of verifying requirements capture at each level of abstraction in the
codesign process and validating the correctness of the realization of the design
at that level. If rigorously followed, this "correct by construction" method will
produce software that works the first time it is executed, hardware that functions
as intended in initial testing, and full compatibility between hardware and
software realizations of the codesign. GrTT provides behavior models that
support users meeting the correct by construction goal by verifying
requirements capture and validating the products of the translation process.

Management Communications 22 GrTT Technical Report
and Control, Inc.

1500 STEP, Real Data

1000
500
O
-500
-1000
1000 STEP, Imaginary Data
500
0
-500
-1000
1500 FILL, Real Data
800 9 WIND, Real Data
1000 600
500 400 4
200 4
0 O
-200 o
500 400
-1000 -600 <
-800
FILL, Imagi Data
1000 ginary 800 - WIND, Imaginary Data
600 o
500 400 4
200 4
0 0+
-200 o
-500 400 4
-600 «
1000 800 1
) -1000 =
15000 o= FFTO, Real Data
RSCO, Imaginary Data

15000 RSCO, Real Data
10000 < FFTO, Imaginary Data 10000
5000 <= 5000
0
-10000 o -10000

-15000 &=

Figure 14. - Input and Internal Queue Contents from MPID Unit Testing
- Mini SAR Benchmark

Management Communications 23 GrTT Technical Report
and Control, Inc.

15000 + 0O_B1_0, Real Data
6000 O_B1_1, Real Data

e

-4000
8000 O_B1_0, Imaginary Data -6000
6000 10000 1 O_B1_1, Imaginary Data
4000

2000 5000 +
0
-2000 0+
-4000
000 -5000 +
8000 10000 +
-10000 ’ 1
-15000 +
6000 O_B1_2, Real Data 6000 O_B1_3, Real Data
4000 4000
2000 2000
° A 0
-2000 -2000
-4000 -4000
6000 6000
6000 O_B1_2, Imaginary Data 10000 0O_B1_3, Imaginary Data
4000 8000
= 6000
2000 4000
0 2000
4000 -2000
~4000
-6000 6000
-8000 -8000
Figure 14. - (cont.) Output Queue Contents from MPID Unit Testing
- Mini SAR Benchmark
Management Communications 24 GrTT Technical Report

and Control, Inc.

MPID O_B1_0 (real) MPID O_B1_0 (imag)
|

4000

2000
1000

-1000

rTT O_B1_0 (imag)

GrTT O_B1_0 (real)

Diff O_B1_0 (real) Diff O_B1_0 (imag)
08 ¢
1. 06 4
04 &+
05 + 0.2 l
0 " L I | 0 4 I i 1 l l
02 +
-05 4
04 4
1T 06 4
15

Figure 14. - (cont.) Comparison of Output Queue Contents from MPID
Unit Testing and GrTT Test Utility - Mini SAR Benchmark

Management Communications 25 GrTT Technical Report
and Control, Inc.

ATTACHMENT 1
SPGN For Range and Azimuth Partitions

Range Example

The Range example is taken directly from a Synthetic Aperature Radar (SAR)
application that has been used as a benchmark in the RASSP Program. The Range
graph implements the front end processing after baseband conversion and filtering
have been performed. The processing incorporates pulse compression. In-phase and
quadrature samples are first weighted to reduce the sidelobe structure of the
compressed pulse and to compensate for the non-ideal IF filter characteristics.
Weighted 1/Q data are transformed to compressed range data using a Fourier
Transform. Compensation occurs after the pulse compression to account for radar

cross section variations due to elevation beam-shape modulation and R4 losses.

SPGN for Range Graph

IGRAPH (P_RANGE

GIP = VMUL : CFLOAT ARRAY(256),
RCSMUL : FLOAT ARRAY (256)
INPUTQ = STEP : CFLOAT
OUTPUTQ = O_Bl : CFLOAT,
O_B2 : CFLOAT,
O_B3 : CFLOAT,
O_B4 : CFLOAT
)
%GIP (N_R : INT INITIALIZE TO 470)
%GIP (N_P_AZ : INT INITIALIZE TO 4)
%GIP (N_FFT : INT INITIALIZE TO 256)
3GIP (PAD : CFLOAT INITIALIZE TO <0.0EQ0, 0.0E0>)
%GIP (P : DINT ARRAY (4, 1)
INITIALIZE TO { 64,
64,
64,
64 })
SQUEUE FILL CFLOAT
FQUEUE

(

(:
%QUEUE (FFTO : CFLOAT
$QUEUE (:

INODE (FILL_P

PRIMITIVE = D _VFILL
PRIM_IN = N_R/2,

N_FFT - N_R/2,

0,

PAD,

STEP

THRESHOLD = N_R/2

PRIM_OUT
)

FILL

Attachments 1 GrTT Technical Report
26

$NODE (WINDOWING

PRIMITIVE
PRIM_IN

PRIM_OUT
)

FNODE
PRIMITIVE
PRIM_IN

PRIM_OUT
)

$NODE (RCS_MULT
PRIMITIVE
PRIM TN

PRIM_OUT
)

%NODE (

PRIMITIVE
PRIM_IN

PRIM _OUT

)
$ENDGRAPH

(RANGE_FFT

P_CORNER_T

D_VMUL
N_FFT,
UNUSED,
FILL
THRESHOLD = N_FFT,

WIND

D _FFT
N_FFT,
N_FFT,

11
UNUSED,
WIND
THRESHOLD = N_FFT

FFTO

D_VMUL
N_FFT,
UNUSED,
FFTO
THRESHOLD = N_FFT,
RCSMUL

RSCO

D_FANOUT
N_FFT,
N_P_AZ,
PI
1,
RSCO

THRESHOLD = N_FFT
FAMILY [O_B1,0_B2,0_B3,0_B4],
UNUSED

Graph Value Set for Range Graph

Since there are no graph variables that require values in order for the translation to
occur, the Graph Value Set is empty.

SGV_SET
%$END_SET

Attachments 2 GITT Technical Report

27

-Azimuth Example

The Azimuth example is taken directly from a Synthetic Aperature Radar (SAR)
application that has been used as a benchmark in the RASSP Program. The Azimuth
graph implements the processing after range processing has been performed. The
processing incorporates cross-range convolution filtering. Compressed range pulses
are placed in time sequence into a two-dimensional array and each row of the array is
convolved with a row specific kernel. The convolution processing is performed using
FFTs with the overlap and save method.

SPGN for Azimuth Graph

%GRAPH (P_AZI
INPUTQ [1..4]Y0 : CFLOAT,
VMUL,_AZ : CFLOAT ARRAY (128)

YOA_AZ : CFLOAT

OUTPUTQ

%GIP (N_P_AZ : INT INITIALIZE TO 4)
%GIP (N_F_A : INT INITIALIZE TO 64)
3GIP (N_FFT_AZ : INT INITIALIZE TO 128)
(
(

3GIP (N_FFT_AZ2 : INT INITIALIZE TO N_FFT_AZ/2)
%GIP (PAZ : DINT ARRAY (4, 1)
INITIALIZE TO { 64,
64,
64,
64 })
FQUEUE (SYFC_AZ : CFLOAT)
JIQUEUE (YFCO : CFLOAT)
%QUEUE (Y_AZ : CFLOAT)
%QUEUE (VMAUL : CFLOAT)
¥NODE (M_RANGE
PRIMITIVE = D_FANIN
PRIM_IN = N_F_ A * N_P_AZ,
N_P_AZ,
PAZ,
1,
[1..4]Y0
THRESHOLD = N_F_A*N_FFT_AZ2 / 2
CONSUME = N_F_A*N_FFT_AZ2/N_P_AZ
PRIM_OUT = SYFC_AZ,
UNUSED

)

INODE (TRANS

PRIMITIVE = D_MTRANS
PRIM_IN = N_FFT_AZ,

N_F_A,

SYFC_AZ

THRESHOLD = N_F_A*N_FFT AZ

PRIM _OUT = YFCO
)

INODE (AZIMUTH_FFT

Attachments 3 GrTT Technical Report
28

N

F_A*N_FFT_AZ

N_F_A*N_FFT_AZ/4

THRESHOLD = N_F_A*N_FFT_AZ,

PRIMITIVE = D_FFT
PRIM_IN = N_FFT_AZ,
N_FFT_AZ,
0,
1,
UNUSED,
YFCO
THRESHOLD =
%$THRESHOLD
PRIM _OUT = Y_AZ
)
$NODE (CPLEX MULT
PRIMITIVE = D_VMUL
PRIM_IN = N_FFT_AZ,
UNUSED,
Y_AZ
VMUL_AZ
THRESHOLD =
PRIM_OUT = VMAUL
)
¥NODE (AZIMUTH_IFFT
PRIMITIVE = D_FFT
PRIM_IN = N_FFT_AZ,
N_FFT_AZ2,
1,
N_FFT_AZ2+1,
UNUSED,
VMAUL

1

THRESHOLD = N_F_A*N_FFT_AZ

PRIM OUT = YOA_AZ
)
$ENDGRAPH

Graph Value Set for Azimuth Graph

Since there are no graph variables that require values in order for the translation to

occur, the Graph Value Set is empty.

¥GV_SET
%END_SET

Attachments 4

29

GrTT Technical Report

ATTACHMENT 2
SPGN for the I0_BOARD Hardware Partition Graph

%GRAPH (IO_BOARD

GIP = NTAPS : INT,

FILT_WTS :FLOAT ARRAY (NTAPS)
INPUTQ = SENSOR_DATA : CINT
OUTPUTQ = FILTERED DATA : CFLOAT

)

¥GIP (NPTS : INT
INITTALIZE TO 236)

%GIP (MULT_ARRAY : CFLOAT ARRAY (2)

INITIALIZE TO {<-1.0EQ,
%$QUEUE (MULT_IN : CFLOAT)
SQUEUE (FILT_IN : CFLOAT)

ZNODE (CONVERT

PRIMITIVE = D_ITOR

PRIM_IN = NPTS,
UNUSED,
UNUSED,
SENSOR_DATA

THRESHOLD
PRIM_OUT = MULT_IN
)

= NPTS

¥NODE (MULT

PRIMITIVE =D_VMUL

PRIM_IN = NPTS,
UNUSED,
MULT_IN

THRESHOLD

MULT_ARRAY

PRIM _OUT = FILT_IN

)

INODE (FIR_FILT
PRIMITIVE = D_FIRI1S
PRIM IN = NPTS,
UNUSED,
NTAPS,
UNUSED,
FILT_WTS,
FILT_IN
THRESHOLD = NPTS
FILTERED_DATA

= NPTS,

PRIM_OUT =
)

FENDGRAPH

Attachments 5
30

-1.0E0>, <1.0E0, 1.0EC>})

GrTT Technical Report

ATTACHMENT 3
10_BOARD Behavior Model

Ada Specification for I0_BOARD

--} File: io_board_.ada
--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--| On 04/25/96, at 16:07:56

--| With Clauses for Basic GrTT Types
with Cfloat_Type_Package;

with Cint_Type Package;

with Float_Type_Package;

with Int_Type_Package;

package Io_Board is
!
--| Procedure: Init
--| Used to initialize all queues in the GrTT PID. If the
--| procedure Pid is called before this procedure, the exception
--| Uninitialized_Pid shall be raised.
-~
procedure Init (
Ntaps : in Natural;
Filt_Wts : in Natural;
Sensor_Data : in Natural;
Filtered Data : in Natural);
-
Uninitialized Pid : exception;
-1
-1
--| Procedure: Pid
--| This procedure shall perform the same functionality as the
--| input partition graph Io_Board.
-

procedure Pid (
Ntaps : in out Int_Type Package.Int_Vector_Access_Type;
Filt_Wts : in out Float_Type_Package.Float_Vector_ Access_Type;
Sensor_Data : in out Cint_Type_Package.Cint_Vector_ Access_Type;
Filtered Data : in out Cfloat_Type_Package.Cfloat_Vector_Access_Tvpe);

end Io_Board;
Ada Body for I0_BOARD

--| File: io_board.ada
--] Generated by the MCCI Graph Translation Tool (GxTT) - Version: 1.0

-—| On 04/25/96, at 16:07:56

--] With Clauses for Basic GrTT Types
with Cfloat_Type_Package;

Attachments 6 GrTT Technical Report
31

with Float_Type_Package;

with Dfloat_Type_Package;

with Int_Type_Package;

-

--| Use Clauses for Basic GrTT Types
use Float_Type_ Package;

use Int_Type_ Package;

-1

--] With Clauses for GrTT Queue Managers
with Cfloat_Queue_Manager;

with Cint_Queue_Manager;

--| With Clauses for GrTT Algorithms
with D Firls;
with D TItor;
with D _Vmul;

package body Io_Board is

-

--| GrTT PID type definitions...
-1

type Gv_State Type is range 0..1;
type Comp_State Type is range 0..1;

--| GrTT PID Constant & Variable definitions...
--| PID State Constants & Variables:

Top_Of_Period : constant Gv_State_Type := Gv_State_Type'First;
Composite_Init : constant Comp_State_Type := Comp_State_Type'First;
==
Gv_State : Gv_State_Type;
Comp_State : Comp_State_Type;
|
--| Declare Graph Variables...
Npts : Int_Type Package.Int;
Mult_Array Entity : Cfloat_Type_Package.Cfloat_Vector_Type (0..1);
Mult_Array : Cfloat_Type_ Package.Cfloat_Vector_ Access_Type
:= new Cfloat_Type_Package.Cfloat_Vector_Type' (Mult_Array_ Entity);
-1
--| Declare Formal Queues...
QMult_In : Cfloat_Queue_Manager.Queue_Type;
QFilt_In : Cfloat_Queue_Manager.Queue Type;
QSensor_Data : Cint_Queue_Manager.Queue_ Type;
QFiltered Data : Cfloat_Queue_Manager.Queue Type;
-1
--| Initialization Flag Declaration...
Initialized : Boolean := False;
--|
-
function Determine_Gv_Set return Gv_State Type is
begin
return 1;
end Determine Gv_Set;

procedure Init (

Attachments 7 GrTT Technical Report
32

Ntaps : in Natural;
Filt_Wts : in Natural;
Sensor_Data : in Natural;
Filtered Data : in Natural) is

begin
--| Initialize State Variables:
Gv_State := Top_Of_Period;
Comp_State := Composite_Init;
-1
--| Set Initialize Flag
Initialized := True;
-1
--|] Initialize Formal Queue Buffers
Cint_Queue_Manager.Initialize (Sensor_Data, 0, QSensor_Data);
Cfloat_Queue Manager.Initialize (Filtered Data, 0, QFiltered Data);
|
--| Initialize Persistent Queue Buffers (if any)

end Init;

-1

- |

procedure Pid (
Ntaps : in out Int_Type Package.Int_Vector_Access_Type;
Filt_Wts : in out Float_Type_Package.Float_Vector_ Access_Type;
Sensor_Data : in out Cint_Type_Package.Cint_Vector_Access_Type;
Filtered Data : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type)
is

procedure Io_Board Kernel (
QSensor_Data : in out Cint_Queue_Manager.Queue Type;
QFiltered_Data : in out Cfloat_Queue Manager.Queue_Type) is
-1
--| Local Data Vector Declarations
--1
Mult_In : Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Filt_In : Cfloat_Type_ Package.Cfloat_Vector_ Access_Type;
begin
case Gv_State is
when Top_Of_Period =>
Gv_State := Determine_Gv_Set;
Comp_State := Composite_Init;

--| Graph Value Set #1
when 1 =>
Npts := 236;

Mult_Array (0).Re := -1.00000000000000E+00

-1.00000000000000E+00

Mult_Array (0).Im :

Mult_Array (1).Re := 1.00000000000000E+00

1.00000000000000E+00

Mult_Array (1).Im :
case Comp_State is
--| Initialization Composite State
when Composite_Init =>
--| Init Formal Thresholds
Cint_Queue_Manager.Set_Threshold (236, QSensor_Data);

Attachments 8 GITT Technical Report
33

~--| State Variable Maintenance
Comp_State := Comp_State + 1;

--| Pericdic Composite #1

when 1 =>
--] Circular Buffer Inits
Cfloat_Queue_Manager.Initialize (236, 236, QMult_In);
Cfloat_Queue_Manager.Initialize (236, 236, QFilt_In);
-—1
--| Pode Executions
Mult_In := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..235);
Sensor_Data := new Cint_Type_Package.Cint_Vector_Type' (

Cint_Queue_Manager.Read (236, 0, QSensor_Data));
D_ITOR.Prim (

Dfloat_Type_Package.Compound_Type_Pkg.Unused,

Dfloat_Type_ Package.Compound Type_Pkg.Unused, 236,

Sensor_Data, Mult_In);

Cint_Queue_ Manager.Consume (236, QSensor_Data);
Cint_Type_Package.Compound_Type_Pkg.Free (Sensor_Data);
Cfloat_Queue_Manager.Produce (Mult_In.all, QMult_In);
Cfloat_Type_Package.Compound Type_Pkg.Free (Mult_In);
==

Filt_In := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..235);
Mult_TIn := new Cfloat_Type_Package.Cfloat_Vector Type' (

Cfloat_Queue_Manager.Read (236, 0, QMult_In));
D_VMUL.Prim (

236, 3, 236, Mult_In, 2, Mult_Array, Filt_In);
Cfloat_Queue_Manager.Consume (236, QMult_1In);
Cfloat_Type_ Package.Compound Type_Pkg.Free (Mult_In);
Cfloat_Queue_Manager.Produce (Filt_In.all, QFilt_In);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Filt_In);
-=1
Filtered Data := new

Ctloat_Type_Package.Cfloat_Vector_Type (0..228);
Filt_In := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue Manager.Read (236, 0, QFilt_In));
D_FIR1S.Prim (

236, 1, 8, 1, Filt_Wts, 236, Filt_In, Filtered Data);
Cfloat_Queue_Manager.Consume (236, QFilt_In);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Filt_In);
Cfloat_Queue_Manager.Produce (Filtered Data.all,
QFiltered Data);
Cfloat_Type_Package.Compound_Type_Pkg.Free (

Filtered Data);
-=1
--| Formal Threshold Updates
Cint_Queue_Manager.Set_Threshold (0, QSensor_Data);
--|
--| State Variable Maintenance
Gv_State := Top_Of_Period;

end case;

end case;
end Io_Board_Kernel;

begin --| Beginning of Procedure Pid
-1

Attachments 9 GrTT Technical Report
34

--| Verify that the PID's Queues are initialized
-=
if not Initialized then
raise Uninitialized_Pid;
end if;
-

--| Move input data from arrays to queues (circular buffers).
Cint_Queue Manager.Produce (Sensor_Data.all, QSensor_Data);
-
--] Call PID Kernel Processing.
while (
Cint_Queue Manager.Over_Threshold (QSensor_Data)) loop
-~
Io_Board Kernel (
QSensor_Data,
QFiltered _Data);
end loop;

-1
--| Move the output data from the PID's output queues
--| onto arrays which output the data to the I/O wrapper.
-
Filtered Data := new Cfloat_Type_ Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (
Read_Amt => Cfloat_Queue_Manager.Nep_Type (
Cfloat_Queue_Manager.Size (QFiltered Data)),
Offset_Amt => 0,
From_Queue => QFiltered Data));
-~
-1
--| Consume data from the PID's output queues.
~--1
Cfloat_Queue_Manager.Consume (
Amount => Cfloat_Queue_Manager.Nep_Type (
Cfloat_Queue_Manager.Size (QFiltered Data)),
Queue => QFiltered Data);
end Pid;
end Io_Board;

Ada Test Procedue for 10_BOARD

O P
--| File: io_board_test.ada

--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--| On 04/25/96, at 16:07:56
SRR
-=

--| With Clauses for Basic GrTT Types

with Cfloat_Type_ Package;

with Cint_Type Package;

with Float_Type_Package;

with Int_Type_Package;

-1

--| With Clauses for I/0 Routines

with Read_Grtt_Inputqg Cint;

with Read_Grtt_Inputq Float;

Attachments 10 GrTT Technical Report
35

with Read_Grtt_Inputqg Int;
with Write Grtt_Outputqg Cfloat;
-

--| With Clause for GrTT PID
with Io_Board;

with Text_Io;
procedure Io_Board Test is

Ntaps : Int_Type_Package.Int_Vector_Access_Tvpe;

Filt_Wts : Float_Type_Package.Float_Vector_Access_Type;

Sensor_Data : Cint_Type_Package.Cint_Vector_Access_Type;

Filtered Data : Cfloat_Type_Package.Cfloat_Vector_Access_Tvpe;
begin

-1

-1

--1 Read PID Input Vectors

|

Text_Jo.Put_Line ("Reading input file NTAPS.dat');

Ntaps := Read Grtt_Inputg Int ("NTAPS.dat");

Text_Jo.Put_Line ("Reading input file FILT WTS.dat");

Filt_Wts := Read Grtt_Inputg Float ("FILT WTS.dat");

Text_To.Put_Line ("Reading input file SENSOR _DATA.dat");

Sensor_Data := Read_Grtt_Inputqg Cint ("SENSOR_DATA.dat");

--1
-1
--| Initialize PID Output Vectors
-
Filtered Data := new Cfloat_Type_ Package.Cfloat_Vector_Type (0..1024);
il
-
-~| Initialize Queues for PID
-1
Io_Board.Init (
1024,
1024,
1024,
1024);
-1
-1
--| Call to PID Processing Routine
==
Text_Io.Put_Line ("Processing Data");
Io_Board.Pid (
Ntaps,
Filt_Wts,
Sensor_Data,
Filtered Data);

--| Print PID Output Vectors
Text_TIo.Put_Line ("Writing Output to FILTERED DATA.dat");

Write_Grtt_Outputqg Cfloat.Single ("FILTERED DATA.dat", Filtered Data);
end Io_Board Test;

Attachments 11 GrTT Technical Report
36

ATTACHMENT 4
Software Allocation Graph and Equivalent Application Graph

Software Allocation Graph

%GRAPH (SAR

INPUTQ [1..4]YRANGE : CFLOAT

OUTPUTQ [1..4]00TI : CFLOAT

)
%GIP (N_P_RANGE : INT INITIALIZE TO 4)
2GIP (N_F_A : INT INITIALIZE TO 64)
%GIP (N_R : INT INITIALIZE TO 236)
$GIP (N_FFT : INT INITIALIZE TO 256)
%GIP (N_FFT_AZ : INT INITIALIZE TO 128)
%$GIP (N_P_AZ : INT INITIALIZE TO 4)
%GIP (RCSMUL : FLOAT ARRAY (256)
INITIALIZE TO 256 OF 1.0E0)
%%Get actual initial values from rcs_kernc.dat
%GIP (VMUL_AZ : CFLOAT ARRAY (128)
INITIALIZE TO {128 OF <1.0EOQ, 1.0E0))
%%Get actual initial values from az_kernc.dat
VAR (VMUL : CFLOAT ARRAY (256)
INITIALIZE TO {256 OF <1.0E0, 1.0E0))

%%Get actual initial values from taylor_kernc.dat

%$VAR (PAD : INT
INITIALIZE to 21)

%QUEUE ([1..N_P_RANGE,1l..N_P_AZ]Y0 : CFLOAT
INITIALIZE TO 1024 OF {<0.0E0, 0.0E0>})

%SUBGRAPH { [N=1..N_P_ RANGE]RANGE

GRAPH = RANGEJ
GIP = VMUL,
RCSMUL

INPUTQ = [N]YRANGE
OUTPUTQ = [N][1..N_P_AZ]Y0
)

%SUBGRAPH ([M = 1 .. N_P_AZ]AZI
GRAPH = AZIDJ
INPUTQ = [1..N_P_RANGE, M]YO
OUTPUTQ = [M]OUTI

Attachments 12 GrTT Technical Report
37

S]

)

%% PARTITIONING INFORMATION

%PRAGMA (PARTITION
NAME = [I=1..4]P_RANGE
SUBGRAPH = [I]RANGE
PROCESSOR = I860
)

SPRAGMA (PARTITION
NAME = [J=1..4]P_AZI
SUBGRAPH = [J]AZI
PROCESSOR = I860
)

%$PRAGMA (ASSIGNMENT
PROCESSOR = CE3
NODE = [1]P_AZI, [1]P_RANGE
)

%PRAGMA (ASSIGNMENT
PROCESSOR = CE4
NODE = [2]P_AZI, [2]P_RANGE
)

%PRAGMA (ASSIGNMENT
PROCESSOR = CES5
NODE = [3]P_AZI, [3]P_RANGE
)

%PRAGMA (ASSIGNMENT
PROCESSOR = CE6
NODE = [4]P_AZI, [4]P_RANGE
)

FENDGRAPH

Equivalent Application Graph
FGRAPH (SAR_EAG

INPUTQ [1..4]YRANGE : CFLOAT

OUTPUTQ {1..4]0UTI : CFLOAT
)

%GIP (N_P_RANGE : INT INITIALIZE TO 4)

3GIP (N_F_A : INT INITIALIZE TO 64)

%GIP (N_R : INT INITIALIZE TO 236)

%GIP (N_FFT : INT INITIALIZE TO 256)

3GIP (N_FFT_AZ : INT INITIALIZE TO 128)

Attachments 13 GrTT Technical Report
38

$GIP (N_P_AZ : INT INITIALIZE TO 4)

%GIP (RCSMUL : FLOAT ARRAY (256)
INITIALIZE TO 256 OF 1.0EQ)
2%Get actual initial values from rcs_kernc.dat

%GIP (VMUL_AZ : CFLOAT ARRAY(128)
INITIALIZE TO {128 OF <1.0E0, 1.0EQ0))
22Get actual initial values from az_kernc.dat

SVAR (VMUL : CFLOAT ARRAY (256)
INITIALIZE TO {256 OF <1.0EO, 1.0E0))
%%Get actual initial values from taylor_kernc.dat

$VAR (PAD : INT
INITIALIZE to 21)

$QUEUE ([1..N_P_RANGE,1..N_P_AZ]Y0 : CFLOAT
INITIALIZE TO 1024 OF {<0.0EO, 0.0E0>})

$NODE ([N=1..N_P_RANGE]P_RANGE

PRIMITIVE = MP_RANGE
PRIM_IN = N_P_A7Z,
N_R,
N_FFT,
VMUL,
RCSMUL,
PAD,
[N]YRANGE
THRESHOLD = N.R - 7
PRIM OUT = [N, 1 .. N_P_AzZ]Y0
)
SNODE ([M = 1 .. N_P_AZ]P_AZI
PRIMITIVE = MP_AZI
PRIM_IN = N_FFT_AZ,
N_P_AZ,
N _F_A,
N_FFT_AZ/2,
VMUL,
[1..N_P_RANGE, M]Y0
THRESHOLD = N_F_A*N~FFT_AZ/2
CONSUME = N_F_A*N-FFT_AZ/ (2*N_P_AZ)
PRIM_OUT = [M]OUTI
)
$PRAGMA (ASSIGNMENT
PROCESSOR = CE3
NODE = [1]P_AZI, [1]P_RANGE
)
$PRAGMA (ASSIGNMENT
PROCESSOR = CE4
NODE = [2]P _AZI, [2]P_RANGE
)
Attachments 14 GrTT Technical Report

39

%PRAGMA (ASSIGNMENT
PROCESSOR = CE5
NODE = [3]P_AZI, [3]P_RANGE
)

FPRAGMA (ASSIGNMENT
PROCESSOR = CE6
NODE = [4]P_AZI, [4]P_RANGE
)

SENDGRAPH

Attach4r61ents 15 GrTT Technical Report

ATTACHMENT 5
Behavior Models for Range and Azimuth

Ada Specification for Range Graph (GrTT Produced)

USRS
--|] File: p_range_ .ada

--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--| On 03/21/96, at 09:03:28
U S
--1

--| With Clauses for Basic GrTT Types

with Cfloat_Type_Package;

with Float_Type_Package;

package P_Range is

-

--| Procedure: Init

--| Used to initialize all queues in the GrTT PID. If the

--] procedure Pid is called before this procedure, the exception

--| Uninitialized Pid shall be raised.

-1

procedure Init (
Virul : in Natural;
Resmul : in Natural;
Step : in Natural;
O_Bl : in Natural;
O_B2 : in Natural;
O_B3 : in Natural;
O_B4 : in Natural);

-~

Uninitialized_Pid : exception;

-

-=1

--1 Procedure: Pid

--| This procedure shall perform the same functionality as the

--| input partition graph P_Range.

=

procedure Pid (
vmul : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Recsmul : in out Float_Type_Package.Float_Vector_ Access_Type:
Step : in out Cfloat_Type_ Package.Cfloat_Vector_Access_Type;
O_Bl : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
O_B2 : in out Cfloat_Type_ Package.Cfloat_Vector_Access_Type;
0O B3 : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
0_B4 : in out Cfloat_Type Package.Cfloat_Vector_Access_Type) i

-~

end P_Range;

Ada Body for Range Graph (GrTT Produced)

o e
--| File: p_range.ada

--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--1 On 03/21/96, at 09:03:28

Attachments 16 GrTT Technical Report
41

_—+ ——
-1

--} With Clauses for Basic GrTT Types
with Cfloat_Type_Package;

with Float_Type_ Package;

with Int_Type_Package;

with Dint_Type_ Package;

--1

--| Use Clauses for Basic GrTT Types

use Float_Type_Package;

use Int_Type Package;

use Dint_Type_Package;

- |

--| With Clauses for GrTT Queue Managers
with Cfloat_Queue_Manager;

--| With Clauses for GrTT Algorithms
with D_Fanout;

with D_Fft;

with D_V£ill;

with D_vmul;

package body P_Range is

-

--| GrTT PID type definitions...
-1

type Gv_State_Type is range 0..1;
type Comp_State _Type is range 0..1;

-
-
--| GrTT PID Constant & Variable definitions...
-
--| PID State Constants & Variables:
-
Top_Of Period : constant Gv_State_Type := Gv_State Type'First;
Composite_TInit : constant Comp_State_Type := Comp_State_ Type'First;
-
Gv_State : Gv_State_Type;
Comp_State : Comp_State Type;
-=1
--| Declare Graph Variables..
N_R : Int_Type_Package.Int;
N_P_Az : Int_Type Package.Int;
N_Fft : Int_Type_Package.Int;
Pad : Cfloat_Type_Package.Cfloat;
P_Entity : Dint_Type_Package.Dint_Vector_ Type (0..3);
P : Dint_Type_Package.Dint_Vector_Access_Type
:= new Dint_Type_Package.Dint_Vector_Type' (P_Entity);

-1
--] Declare Formal Queues.
QFill : Cfloat_Queue | Manager Queue_Type;
QwWwind : Cfloat_Queue_Manager.Queue_Type;
QFfto : Cfloat_Queue Manager.Queue_Type;
QRsco : Cfloat_Queue_Manager.Queue_ Type;
QStep : Cfloat_Queue Manager.Queue_Type;

_Bl : Cfloat_Queue_Manager.Queue_ Type;

B2 : Cfloat_Queue_Manager.Queue_ Type;
QO_B3 : Cfloat_Queue_Manager.Queue_Type;

Attachments 17 GrTT Technical Report
42

. B4 : Cf

-1

--| Initia

loat_Queue_Manager.Queue_Type;

lization Flag Declaration...

Initialized : Boolean := False;

function Determine_Gv_Set return Gv_State Type is

begin
return

1;

end Determine_Gv_Set;

-~

-

procedure
vmul
Rcesmul
Step :
O_B1 :
O_B2
O_B3
O_B4

begin
--| Ini
Gv_Stat

Init (

in Natural;

: in Natural;
in Natural;

in Natural;

in Natural;

in Natural;

in Natural) is

tialize State Variables:
e := Top_Of_Period;

Comp_State := Composite_Init;

--1 Set
Initial

Initialize Flag
ized := True;

--| Initialize Formal Queue Buffers

Cfloat_Queue Manager.Initialize (Step, 0, QStep);
Cfloat_Queue_Manager.Initialize (O_B1l, 0,) B1);
Cfloat_Queue_Manager.Initialize (O_B2, 0,) B2);
Cfloat_Queue_Manager.Initialize (O_B3, O, _B3);
Cfloat_Queue Manager.Initialize (O_B4, 0,) B4) ;

-1
--| Ini
end Init;

tialize Persistent Queue Buffers (if any)

procedure Pid (

Vrul in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Resmul : in out Float_Type Package.Float_Vector_Access_Type;
Step : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
O_Bl : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
O_B2 : 1in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
0O_B3 in out Cfloat_Type_ Package.Cfloat_Vector_ Access_Type;
O_B4 in out Cfloat_Type_Package.Cfloat_Vector_Access_Type) is
procedure P_Range_Kernel (
QStep : in out Cfloat_Queue_Manager.Queue_ _Type;
Bl : in out Cfloat_Queue Manager.Queue_Type;
Q0_B2 : in out Cfloat_Queue_Manager.Queue_Type;
B3 : in out Cfloat_Queue_Manager.Queue_Type;
B4 : in out Cfloat_Queue_Manager.Queue_Type) is
-1
--| Local Data Vector Declarations
-1
Fill : Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Attachments 18 GrTT Technical Report

43

wind : Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Ffto : Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Rsco : Cfloat_Type_ Package.Cfloat_Vector_Access_Type;
begin
case Gv_State is
when Top_Of Period =>
Gv_State := Determine Gv_Set;
Comp_State := Composite_Init;

-~-] Graph Value Set #1

when 1 =>

N_R := 470;

N P Az := 4;

N_Fft := 256;

Pad.Re := 0.00000000000000E+00
ad.Im := 0.00000000000000E+00
P (0) := 64;

P (1) := 64;

P (2) := 64;

P (3) := 64;

case Comp_State is

--| Initialization Composite State

when Composite_Init =>
--| Init Formal Thresholds
Cfloat_Queue_Manager.Set_Threshold (235, QStep);
--
--| State Variable Maintenance
Comp_State := Comp_State + 1;

--| Periodic Composite #1

when 1 =>
~-| Circular Buffer Inits
Cfloat_Queue_Manager.Initialize (256, 256, QFill)
Cfloat_Queue Manager.Initialize (256, 256, QwWind)
Cfloat_Queue_Manager.Initialize (256, 256, QFfto)
Cfloat_Queue Manager.Initialize (256, 256, QRsco)
~=]
--| Pode Executions
Fill := new

Ctloat_Type_Package.Cfloat_vVector_Type (0..255);
Step := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue Manager.Read (235, 0, QStep));

D _VFILL.Prim (

235, 21, 0, Pad, 235, Step, Fill);
Cfloat_Queue_Manager.Consume (235, QStep);
Cfloat_Type_ Package.Compound Type_Pkg.Free (Step);
Cfloat_Queue Manager.Produce (Fill.all, QFill);
Cfloat_Type_ Package.Compound_ Type_Pkg.Free (Fill);
-

Wind := new :

Cfloat_Type_Package.Cfloat_Vector_Type (0..255);
Fill := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue Manager.Read (256, 0, QFill));
D_VMUL.Prim ¢

256, 1, 256, Fill, 256, vmul, wWind);
Cfloat_Queue_Manager.Consume (256, QFill);

Attachments 19 GrTT Technical Report
44

Cfloat_Type_Package.Compound_Type_Pkg.Free (F11l1);
Cfloat_Queue_Manager.Produce (Wind.all, owind) ;
Cfloat_Type_Package.Compound_Type_Pkg.Free (Wind) ;
-1

Ffto := new

Cfloat_Type_ Package.Cfloat_Vector_Type (0..255);
Wwind := new Cfloat_Type_Package.Cfloat_Vector Type' (

Cfloat_Queue_Manager.Read (256, 0, QWind));
D_FFT.Prim (

256, 256, 0, 1, 0, 256, Wind, Ffto);
Cfloat_Queue Manager.Consume (256, QWind);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Wind) ;
cfloat_Queue_Manager.Produce (Ffto.all, QFfto);
cfloat_Type_Package.Compound_Type Pkg.Free (Ffto);
-1
Rsco := new

Cfloat_Type_Package.Cfloat_Vector_ Type (0..255):
Ffto := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue_Manager.Read (256, O, QFfto));
D_VMUL.Prim (

256, 1, 256, Ffto, 256, Rcsmul, Rsco);
Cfloat_Queue_Manager.Consume (256, QFfto);
Cfloat_Type_Package.Compound Type_Pkg.Free (Ffto);
Cfloat_Queue_Manager.Produce (Rsco.all, QRsco);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Rsco);
-1
O_Bl := new

Cfloat_Type Package.Cfloat_Vector_Type (0..63);
O_B2 := new

cfloat_Type_ Package.Cfloat_Vector_Type (0..63);
O_BR3 := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..63);
O_B4 := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..63);
Rsco := new Cfloat_Type Package.Cfloat_Vector_Type' (

Cfloat_Queue_Manager.Read (256, 0, QRscoO));
D_FANOUT.Prim (

256, P, 1, 1, 256, Rsco, New Cfloat_Type_Package.

Cfloat_Family Array Type' (O_Bl, O_B2, O_B3, O_B4),

Int_Type_Package.Compound_Type_Pkg.Unused) ;
Cfloat_Queue_Manager.Consume (256, QRscoO);
Cfloat_Type_Package.Compound_Type Pkg.Free (Rsco);
Cfloat_Queue_Manager.Produce (O_Bl.all, QO _Bl);
Cfloat_Type_Package.Compound_Type_Pkg.Free (O_Bl);
Cfloat_Queue_Manager.Produce (O_B2.all, QO_B2);
Cfloat_Type_Package.Corpound_Type_Pkg.Free (O_B2);
Cfloat_Queue Manager.Produce (O_B3.all, QO_B3);
Cfloat_Type_Package.Compound_Type_Pkg.Free (O_B3);
Cfloat_Queue_Manager.Produce (O_B4.all, QO_B4);
Cfloat_Type_Package.Compound_Type_Pkg.Free (O_B4);
--1
--| Formal Threshold Updates
Cfloat_Queue_Manager.Set_Threshold (0, QStep);

-1
--| State Variable Maintenance
Gv_State := Top_Of_Period;
end case;
end case;

Attachments 20 GrTT Technical Report

45

end P_Range_ Kernel;

begin --| Beginning of Procedure Pid

-]
--1 Verify that the PID's Queues are initialized
--1
if not Initialized then
raise Uninitialized Pid;
end if;
-=1
-1
--| Move input data from arrays to queues (circular buffers).
Cfloat_Queue_ Manager.Produce (Step.all, QStep);
--|
--] Call PID Kernel Processing.
while (
Cfloat_Queue_Manager.Over_Threshold (QStep)) loop
-
P_Range_Kernel (
QStep,
_B1,
QO_B2,
B3,
_B4);
end loop;

-=1
==
-—| Move the output data from the PID's output queues
-~| onto arrays which output the data to the I/0 wrapper.
-—1
O_Bl := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (
Read_Amt => Cfloat_Queue Manager.Nep_ Type (
Cfloat_Queue_Manager.Size (QO_Bl)),
Offset_Amt => 0,
From Queue => QO_B1));
O_B2 := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (
Read Amt => Cfloat_Queue_Manager.Nep_Type {
Cfloat_Queue_Manager.Size (QO_B2)),
Offset_Amt => 0,
From Queue => QO_B2));
O_B3 := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (
Read Amt => Cfloat_Queue_Manager.Nep_ Type (
Cfloat_Queue_Manager.Size (Q0O_R3)),
Offset_Amt => 0,
From_Queue => QO_B3));
O_B4 := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (
Read_Amt => Cfloat_Queue_Manager.Nep_Type |
Cfloat_Queue Manager.Size (QO_B4)),
Offset_Amt => 0,
From Queue => QO_B4));

--| Consume data from the PID's output queues.

Attachments 21 GrTT Technical Report
46

Cfloat_Queue_Manager.Consume (
Amount => Cfloat_Queue_Manager.Nep Type (
Cfloat_Queue_Manager.Size (QO_B1l)),
Queue => QO _Bl);
Cfloat_Queue_Manager.Consume (
Amount => Cfloat_Queue Manager.Nep_Type (
cfloat_Queue_Manager.Size (QO_B2)),
Queue => QO _B2);
Cfloat_Queue_Manager.Consume (
Amount => Cfloat_Queue_ Manager.Nep_Type (
Cfloat_Queue Manager.Size (QO_B3)),
Queue => QO_B3);
Cfloat_Queue Manager.Consume (
Amount => Cfloat_Queue_Manager.Nep_Type (

Cfloat_Queue_Manager.Size (QO_B4)),
Queue => Q0O _B4);
end Pid;
end P_Range;

Ada Specification for Azimuth Graph (GrTT Produced)

I USRS S
--| File: p_azi_.ada

--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--] On 03/21/96, at 09:03:03
USRS S
-

--| with Clauses for Basic GrTT Types

with Cfloat_Type_Package;

package P_Azi is
-
--| Procedure: Init
--] Used to initialize all queues in the GrTT PID. If the
--| procedure Pid is called before this procedure, the exception
--] Uninitialized_ Pid shall be raised.
| -1
procedure Init (
Yo : in Natural;
vmul_Az : in Natural;
Yoa_Az : in Natural);
-]
Uninitialized Pid : exception;

--| This procedure shall perform the same functionality as the

--| input partition graph P_Azi.

-1

procedure Pid (
Yo : in out Cfloat_Type Package.Cfloat_Family Array_Access_Type;
vmul_Az : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Yoa_Az : in out Cfloat_Type_Package.Cfloat_Vector_ Access_Type);

-1

end P_Azi;

|
i
| -
—1
--] Procedure: Pid

’} Attachments 22 GrTT Technical Report
| 47

Ada Body for Azimuth Graph (GrTT Produced)

e o e e e e e e e e e
--| File: p_azi.ada

--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--|] On 03/21/96, at 09:03:03

o o o e e
-1

--] With Clauses for Basic GrTT Types

with Cfloat_Type_Package;

with Int_Type Package;

with Dint_Type_Package;

-=1

--| Use Clauses for Basic GrTT Types

use Int_Type_Package;

use Dint_Type Package;

==

--| With Clauses for GrTT Queue Managers

with Cfloat_Queue_Manager;

--] With Clauses for GrTT Algorithms
with D_Fanin;

with D_Fft;

with D_Mtrans;

with D_Vrmul;

package body P_Azi is

-

--1 GrTT PID type definitions...
-1

type Gv_State_Type is range 0..1;
type Comp_State Type is range 0..1;

-1
-
--| GrTT PID Constant & Variable definitionms...
==
--| PID State Constants & Variables:
-1
Top_Of_Period : constant Gv_State_Type := Gv_State_Type'First;
Composite Init : constant Comp_State_Type := Comp_State_Type'First;
-=1
Gv_State : Gv_State_Type;
Comp_State : Comp_State Type;
-
--| Declare Graph Variables...
N_P_Az : Int_Type_ Package.Int;
N_F_A : Int_Type Package.Int;
N_Fft_Az : Int_Type_ Package.Int;
N_Fft_Az2 : Int_Type_Package.Int;
Paz_Entity : Dint_Type Package.Dint_Vector_Type (0..3);
Paz : Dint_Type_Package.Dint_Vector_Access_Type
:= new Dint_Type_Package.Dint_Vector_ Type' (Paz_Entity);
- |
--| Declare Formal Queues...
QSyfc_Az : Cfloat_Queue_Manager.Queue Type;
QYfco : Cfloat_Queue_Manager.Queue Type;
QY_Az : Cfloat_Queue_Manager.Queue_Type;

Attachments 23 GrTT Technical Report
48

Qvmaul : Cfloat_Queue_Manager.Queue Type;
QYo : Cfloat_Queue_Manager.Queue Family Type (0..3);
ovmul_Az : Cfloat_Queue_Manager.Queue_Type;
QYoa_Az : Cfloat_Queue_Manager.Queue Type;
-1
--| Initialization Flag Declaration...
Initialized : Boolean := False;
-
-1
function Determine Gv_Set return Gv_State Type is
begin
return 1;
end Determine_Gv_Set;
-
--1
procedure Init (
Yo : in Natural;
vmul_Az : in Natural;
Yoa_Az : in Natural) is
begin
--] Initialize State Variables:
Gv_State := Top_ Of_Period;
Comp_State := Composite Init;
-
--| Set Initialize Flag
Initialized := True;
-1
--| Initialize Formal Queue Buffers
for I in QYo'range loop
Cfloat_Queue_Manager.Initialize (Yo, 0, QYo (I)):
end loop;
Cfloat_Queue Manager.Initialize (Vmul_Az, 0, QVmul _Az);
Cfloat_Queue Manager.Initialize (Yoa_Az, 0, QYoa Az);
-=
——| Initialize Persistent Queue Buffers (if any)
end Init;
-=1
--1
procedure Pid (
Yo : in out Cfloat_Type_Package.Cfloat_Family Array Access_Type;
vmul_Az : in out Cfloat_Type_Package.Cfloat_Vector_Access_Type;
Yoa Az : in out Cfloat_Type Package.Cfloat_Vector_Access_Type) is

procedure P_Azi_Kernel (
QYo : in out Cfloat_Queue_Manager.Queue_Family Type;
ovmul_Az : in out Cfloat_Queue_ Manager.Queue_Type;
QYoa_Az : in out Cfloat_Queue_Manager.Queue_Type) is
--1
--] Local Data Vector Declarations
-=
Syfc_Az : Cfloat_Type_ Package.Cfloat_Vector_ Access_Type;
Yfco : Cfloat_Type_Package.Cfloat_Vector_Access_Type:
Y_Az : Cfloat_Type_Package.Cfloat_vVector_Access_Type;
Vvmaul : Cfloat_Type_Package.Cfloat_Vector_Access_Type;
begin
case Gv_State is
when Top_Of_Period =>
Gv_State := Determine_Gv_Set;

Attachments 24 GrTT Technical Report
49

Comp_State := Composite_Init;

--| Graph Value Set #1

when 1 =>

N_P Az := 4;
N_F A := 64;
N_Fft_Az := 128;
N_Fft_Az2 := 64;
Paz (0) := 64;
Paz (1) := 64;
Paz (2) := 64;
Paz (3) := 64;

case Comp_State is
--| Initialization Composite State
when Composite_Init =>
--| Init Formal Thresholds
Cfloat_Queue_ Manager.Set_Threshold (2048, QYo
Cfloat_Queue_Manager.Set_Threshold (2048, QYo
Cfloat_Queue Manager.Set_Threshold (2048, QYo
(
(

AA,\,\
W N O
N et e e S

e me ws o~

Cfloat_Queue Manager.Set_Threshold (2048, QYo
Cfloat_Queue_Manager.Set_Threshold (128, Qvmul
-

--| State Variable Maintenance

Comp_State := Comp_State + 1;

N

~

--| Periodic Composite #1

when 1 =>
--| Circular Buffer Inits
Cfloat_Queue_ Manager.Initialize (8192, 8192, QSyfc_Az);
Cfloat_Queue_Manager.Initialize (8192, 8192, QYfco);
Cfloat_Queue_ Manager.Initialize (8192, 8192, QY _Az);
Cfloat_Queue_Manager.Initialize (8192, 8192, QvVmaul);
-1
--1 Pode Executions
Syfc_Az := new

Cfloat_Type_Package.Cfloat_Vector Type (0..8191);

Yo (0) := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (2048, 0, QYo (0)));

Yo (1) := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (2048, 0, QYo (1)));

Yo (2) := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (2048, 0, Qvo (2)));

Yo (3) := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue Manager.Read (2048, 0, QYo (3)));
D_FANIN.Prim (

32, Paz, 1, 1, New Cfloat_Type Package.

Cfloat_Family_Array_Type' (Yo (0), Yo (1), Yo (2), Yo (

3)), Syfc_Az, Int_Type_Package.Compound Type_Pkg.

Unused) ;
Cfloat_Queue_Manager.Consume (1024, Qvo (0));
Cfloat_Type_Package.Compound_Type_Pkg.Free (Yo (0));
Cfloat_Queue_Manager.Consume (1024, QYo (1));
Cfloat_Type_Package.Compound_Type_Pkg.Free (Yo (1));
Cfloat_Queue_Manager.Consume (1024, QYo (2));
Cfloat_Type_Package.Compound Type Pkg.Free (Yo (2));
Cfloat_Queue_Manager.Consume (1024, QYo (3));
Cfloat_Type_Package.Compound_Type_Pkg.Free (Yo (3));
Ctloat_Queue_Manager.Produce (Syfc_Az.all, QSyfc_ Az);

Attachments 25 GrTT Technical Report
50

cfloat_Type_Package.Compound _Type_Pkg.Free (Syfc_Az);
-1
Yfco := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..81%91);
Syfc_Az := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue_Manager.Read (8192, 0, QSyfc_Az));
D_MTRANS.Prim (

128, 64, 8192, syfc_Az, Yfco);

Cfloat_Queue Manager.Consume (8192, QSyfc_Az);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Syfc_Az);
Cfloat_Queue_Manager.Produce (Yfco.all, QYfco);
Cfloat_Type_Package.Compound Type Pkg.Free (Yfco);
--1

Y_Az := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..8191);
Yfco := new Cfloat_Type_ Package.Cfloat_Vector_Type' (

Cfloat_Queue_Manager.Read (8192, 0, QYfco));
D_FFT.Prim (

128, 128, 0, 1, 0, 8192, Yfco, Y_Az);

Cfloat_Queue Manager.Consume (8192, Q¥fco);
Cfloat_Type_Package.Compound Type_ Pkg.Free (Yfco);
Cfloat_Queue_Manager.Produce (Y_Az.all, QY _Az);
Cfloat_Type_Package.Compound _Type_Pkg.Free (Y_Az);
--

Vmaul := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..8191);

Y Az := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue Manager.Read (8192, 0, QY_Az));

Vimul_Az := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue Manager.Read (128, 0, Qvmul_Az));
D_VMUL.Prim (

128, 3, 8192, Y_Az, 128, Vmul_Az, Vmaul);
Cfloat_Queue_Manager.Consume (8192, QY_Az);
Cfloat_Type_Package.Compound Type_Pkg.Free (Y_Az);
Ccfloat_Queue_Manager.Consume (128, QVmul_Az);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Vmul Az);
cfloat_Queue_Manager.Produce (Vmaul.all, QVmaul);
Cfloat_Type_Package.Compound_Type_Pkg.Free (Vmaul) ;

-—1
Yoa_ Az := new

Cfloat_Type_Package.Cfloat_Vector_Type (0..4095);
vmaul := new Cfloat_Type_Package.Cfloat_Vector_Type' (

Cfloat_Queue_Manager.Read (8192, 0, Qvmaul));
D_FFT.Prim (

128, 64, 1, 65, 0, 8192, Vmaul, Yoa_Az);
Cfloat_Queue Manager.Consume (8192, Qvmaul);
Cfloat_Type_Package.Compound Type Pkg.Free (Vmaul);
Cfloat_Queue_Manager.Produce (Yoa_Az.all, QYoa Az);
Cfloat_Type_Package.Compound Type_Pkg.Free (Yoa_Az)
-1
--| Formal Threshold Updates
Cfloat_Queue Manager.Set_Threshold (0, QYo (
Cfloat_Queue_ Manager.Set_Threshold (0, QYo (
cfloat_Queue_Manager.Set_Threshold (0, QYo (

(
1

7

Cfloat_Queue_Manager.Set_Threshold (0, QYo
Cfloat_Queue_Manager.Set_Threshold (0, Qvmu
-=|

--| State Variable Maintenance

Attachments 26 GITT Technical Report
51

Gv_State := Top_Of_Period;
end case;
end case;
end P_Azi Kernel;

begin --| Beginning of Procedure Pid

-
--] Verify that the PID's Queues are initialized
-
if not Initialized then
raise Uninitialized Pid;
end if;
-1

--] Move input data from arrays to queues (circular buffers).
for I in Yo'range loop
Cfloat_Queue_Manager.Produce (Yo (I).all, QYo (I));
end loop;
Cfloat_Queue Manager.Produce (Vmul_Az.all, QVmul_Az);
-
--] Call PID Kernel Processing.
while (
Cfloat_Queue_Manager.Over Threshold (Qyo (0)) and
Cfloat_Queue_Manager.Over_Threshold (QYo (1)) and
Cfloat_Queue_ Manager.Over_Threshold (QYo (2)) and
Cfloat_Queue_Manager.Over_Threshold (QYo (3)) and
Cfloat_Queue_Manager.Over_Threshold (QVvmul_Az)) loop
--1
P_Azi_Kernel (
QYo,
Qvmul_Az,
QYoa_Az);
end loop;
-=|

-1

--| Move the output data from the PID's output queues
--| onto arrays which output the data to the I/O wrapper.
~--1
Yoa_Az := new Cfloat_Type_Package.Cfloat_Vector_Type' (
Cfloat_Queue_Manager.Read (
Read Amt => Cfloat_Queue_ Manager.Nep_ Type (
Cfloat_Queue Manager.Size (QYoa_Az)),
Offset_Amt => 0,
From _Queue => QYoa_Az));
-1
-1
--| Consume data from the PID's output queues.
-=1
Cfloat_Queue_Manager.Consume (
Amount => Cfloat_Queue_Manager.Nep_ Type (
Cfloat_Queue Manager.Size (QYoa_Az)),
Queue => QYoa_Az);
end Pid;
end P_Azi;

Attachments 27 GrTT Technical Report
52

ATTACHMENT 6
Test Environments for Range and Azimuth

Ada for Testing Range Graph Translation (GrTT Produced)

e e
--| File: p_range_test.ada

--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--] On 03/21/96, at 09:03:28

e e e e
-1

--| With Clauses for Basic GrTT Types

with Cfloat_Type_Package;

with Float_Type_ Package;

-1

--| With Clauses for I/O Routines

with Read_Grtt_Inputqg Cfloat;

with Read Grtt_Inputqg Float;

with Write Grtt_Outputqg Cfloat;

-1

--| With Clause for GrTT PID

with P_Range;

-1

with Text_Io;
procedure P_Range_Test is

vmul : Cfloat_Type_Package.Cfloat_Vector_Access_Type;

Rcsmul : Float_Type_Package.Float_Vector_Access_Type;

Step : Cfloat_Type_ Package.Cfloat_Vector_Access_Type;

O_Bl : Cfloat_Type_Package.Cfloat_ Vector Access_Type;

O_B2 : Cfloat_Type_Package.Cfloat_Vector_Access_Type;

O_R3 : Cfloat_Type_Package.Cfloat_Vector_Access_Type;

O_B4 : Cfloat_Type_Package.Cfloat_Vector_Access_Type;
begin

-1

--1

--| Read PID Input Vectors

-

Text_Io.Put_Line ("Reading input file VMUL.dat");

Vmul := Read _Grtt_Inputqg Cfloat ("VMUL.dat");

Text_Io.Put_Line ("Reading input file RCSMUL.dat");

Rcsmul := Read _Grtt_Inputqg Float ("RCSMUL.dat");

Text_Io.Put_Line ("Reading input file STEP.dat");

Step := Read_Grtt_Inputg Cfloat ("STEP.dat");

-

-1

--| Initialize PID Output Vectors

O_Bl := new Cfloat_Type_Package.Cfloat_Vector_Type (0..1024);
0O_B2 := new Cfloat_Type Package.Cfloat_Vector_Type (0..1024);
O_B3 := new Cfloat_Type_Package.Cfloat_Vector_Type (0..1024);
O_B4 := new Cfloat_Type_ Package.Cfloat_Vector_Type (0..1024);

-—| Initialize Queues for PID

Attachments 28 GrTT Technical Report
53

-~
P_Range.Init (
1024,
1024,
1024,
1024,
1024,
1024,
1024);

-
-=|
--] Call to PID Processing Routine
-1
Text_Io.Put_Line ("Processing Data");
P_Range.Pid (

Vmul,

Rcsmul,

Step,

O_B1,

O_B2,

O_BR3,

O_B4);
-1
-1
--| Print PID Output Vectors
-=1
Text_To.Put_Line ("Writing Output to O_Bl.dat*);
Write_Grtt_Outputqg Cfloat.Single (*O_Bl.dat", O_Bl);
Text_Jo.Put_Line ("Writing Output to O_B2.dat");
Write_Grtt_Outputqg Cfloat.Single ("O_B2.dat", O_B2);
Text_To.Put_Line ("Writing Output to O_B3.dat");
Write_Grtt_Outputqg Cfloat.Single ("O_B3.dat", O_B3);
Text_To.Put_Line ("Writing Output to O_B4.dat");
Write_Grtt_Outputqg Cfloat.Single (*O_B4.dat", O_B4);

end P_Range Test;

Ada for Testing Azimuth Graph (GrTT Produced)

e o e e e e e
--| File: p_azi_test.ada

~--| Generated by the MCCI Graph Translation Tool (GrTT) - Version: 1.0

--} On 03/21/96, at 09:03:03

e e e
-

--| With Clauses for Basic GrTT Types

with Cfloat_Type Package;

--1

--1 With Clauses for I/O Routines

with Read Grtt_Inputqg Cfloat;

with Write_ Grtt_Outputqg Cfloat;

-]

--| With Clause for GrTT PID

with P_Azi;

--1

with Text_To;

procedure P_Azi_Test is

Attachments 29 GrTT Technical Report
54

Yo : Cfloat_Type_Package.Cfloat_Family Array Access_Type;
vmul_Az : Cfloat_Type_ Package.Cfloat_Vector_Access_Type;
Yoa_Az : Cfloat_Type_Package.Cfloat_Vector_ Access_Type:
begin
==
-1
--| Read PID Input Vectors
-1
Text_TIo.Put_Line ("Reading input files YO_x.dat");
Yo := new Cfloat_Type_Package.Cfloat_Family Array_ Type (0..3);

Yo (0) := Read_Grtt_Inputqg Cfloat ("YO_0.dat");
Yo (1) := Read Grtt_Inputqg Cfloat ("YO_l.dat");
Yo (2) := Read_Grtt_Inputg Cfloat (*'YO_2.dat");
Yo (3) := Read_Grtt_Inputqg Cfloat ("YO_3.dat*);

Text_Io.Put_Line ("Reading input file VMUL_AZ.dat");
Vmul_Az := Read_Grtt_Inputqg Cfloat (*VMUL_AZ.dat");
-
-1
--] Initialize PID Output Vectors
-
Yoa_Az := new Cfloat_Type_Package.Cfloat_Vector_ Type (0..1024);
-1
-
--| Initialize Queues for PID
-=
P_Azi.Init (
1024,
1024,
1024);
-1
-
--| Call to PID Processing Routine
-
Text_Io.Put_Line ("Processing Data');
P_Azi.Pid (
Yo,
Vmul_Az,
Yoa_Az);
-
-
--| Print PID Output Vectors
-=1
Text_To.Put_Line ("Writing Output to YOA_AZ.dat");
Write_Grtt_Outputqg Cfloat.Single ("YOA_AZ.dat", Yoa_Az);
end P_Azi_Test;

Attachments 30 GrTT Technical Report
55

e’ o

WN

N N Y T A

NAPPRRDRIOROWRDWDWORDWLNNN 4
BHDOON ~ =t e d ek add ek a

ONOUO AWM=

Attachment 7

GRAPH TRANSLATION TOOL (GRTT) USER'S MANUAL

Scope
System ldentification
System Overview
Document Overview
Referenced Documents
Government Documents
Non Government Documents
GrTT Execution
Input Data
SPGN
Graph Value Set
Database Elements
Output
Command Line Processing Options
Domain Primitives
Domain Primitive Description
Title
Functionality
Algorithm
input/Output Restrictions
Production Function
Parameter List
See Also
Example of Domain Primitive Description
Domain Primitive Ada Algorithm
Domain Primitive Autocode Interface (Database)
Preliminary Initial Set of Domain Primitives
Testing GrTT Output
Examples

56

G T G Gy
O~NWONDNOOOODOOOVOVOVONNOOOOOOIOITA A DARNL

GRAPH TRANSLATION TOOL (GRTT) USER'S MANUAL

1. Scope

1.1 System Identification

This document describes the use of the Graph Translation Tool (GrTT), a
software program for translating a signal processing graph, expressed in the
Processing Graph Method (PGM), into Ada source code that implements the
signal processing embodied by the graph.

1.2 System Overview

GrTT is a software tool for the translation of a signal processing graph specified
using the Processing Graph Method (PGM) to Ada source code that implements
the signal processing.

GrTT parses the input graph into a set of data structures, creates instantiations
of the graph, determines an execution sequence for the graph, and generates
Ada source code that implements the signal processing.

Figure 1 displays the functions performed by GrTT. The inputto GrTT is a
SPGN file which provides a data flow specification of a signal processing
program. SPGN is the notational form of a PGM graph. It may be automatically
generated from iconic specification by one of two existing graphical editors.
The ability to accommodate controls within the translation is a salient feature of
executables generated by GrTT. Graph controls alter the data flow rates
through graphs, change the topology of the graph, or change the processing
performed by any of the domain primitives included in the executable. Controls
are specified to GrTT with Graph Variable (GV) sets. Each GV set specified will
cause some variation in the execution behavior of the executable.

At the application level, an equivalent node that has the GrTT executable as its
primitive replaces the graph or graph segment translated. Ports of an
equivalent node are identical to ports of the graph. Execution behavior of
equivalent nodes at its ports are identical to the replaced graph. ldentical inputs
to a graph and an equivalent node will produce identical outputs under all sets
of controls specified by the GV sets. The single node may replace the graph in
the overall graphical application. Replacing the graph in a larger application
with the equivalent node supports graphical or notational level insertion of the
GrTT executable back into the application.

The Ada translation implements a primitive for the equivalent node that
performs the processing specified by the input graph and each GV set. The
translation includes code to interface the Ada executable. Interfacing code
reads data from a file, generates a file containing output data, reads controls

57

and supporting data tables, and consumes input consume amounts from source
queues.

GrTT FUNCTIONS
PGM Graph and SPGN File

-
%GRAPH (OFPGA1 GV Sets
GIP = BAND_ARRAY: FLOAT ARRAY/
OCTAVE_ARRAY: FLOAT { OCTAVE_TAPS = 55;

Equivalent Node

Figure 1 - GrTT Translation Functions

ARPAY(55) BANDSH_TAPS = ;
NCP:INT NCP = 4;
. NCM = 4;
. NPTSIN = 2048;
INPUTQ = QDEMUX: CFLOAT P=1 :
OUTPUTQ = [1..3JOCT_A: CFLOAT | IM=-1; OFPGAMV
[1..3J0CT_B: CFLOAT xx&ﬂ =1
1..3J0CT_C: CFLOAT 2=1
E1 .Agoc'r:o: CFLOAT VALVE 3=1; [1-3)Q0140CT_A [1..:31Q0180CT_E
. VALVE 4 =1;
y | [-SI0CT ECRLOAT VALVE S = 1} [1.3]Q0150CT 8 \n ~3jQ0170CT_D
%GIP(OCTAVE_TAPS:INT { OCTAVE_TAPS = 55; [1..3]1Q0160CT_C
INITIALIZE TO 55) BANDSH_TAPS = 9;

. NCP = 4;

- NCM = 4;

%VAR(NPP:INT NPTSIN = 2048;

INITIALIZE TO 0) :;= 5

%QUEUE(INPUT_A2: CFLOA =-1

. (NPUT_A2) VALVE 1=1;

: . VAVESSY Ada Source Code for Executable
PRIMITIVE = DFC_REP VALVE 44" orocedure OFPGAMV()
PRIM_IN = N4157 VALVE 51 .. FORMAL GIPS

2, OCTAVE_TAPS : integer;
QDEMUX BANDSH_TAPS : integer;
THRESHOLD = N4157 NPTSIN : integer:
CONSUME = NPTSIN NCM: integer;
PRIM_OUT = INPUT_A1 iM : integer) s
. VARIABLE VALVE = VALVE 1
Single Node Graph SPGN type CFLOAT is
(%GRAPH(OFPGAMY) record
GIP = BAND_ARRAY: FLOAT ARRAY/(9) ?EA'j‘f"“_"
OCTAVE _ARRAY: FLOAT ARRAY(55) mag: tioat;
N end record;
INPUT QUEUE = Q013QDEJMUX:CFLOAT gT"r‘;‘z’g_e.“l"? 53
OUTPUTQ = [1..:3]Q0140CT_A: CFLOAT Finleger:= 93,
[1..3]Q0150CT_B: CFLOAT BTM1 :integer:=8;)
[1.31001600T C: CFLOAT NPTSINPOB : integer := NPTSIN+OTM2+8TM1 ;
[1.31Q1070CT D, CFLOAT NPTSINO2 : integer := NPTSIN2 ;
- — NP : integer:=0;
%v[;ii::]s%?rsgﬁ;rr_)e' CFLOAT NPTSINPO : integer := NPTSIN+OTM2 ;
. NPP : integer :=0;
%QUEUE(QO0SOUTPUT_A2:CFLOAT i
an'lAl(JZE 1061 OF 20 00E500.00E+0> Package BAND_SHFT = new QUEUE(CFLOAT:
: package CBSAU is new CDM_CFF{(
PRIMITIVE = OF(GA.V AN sNPOB
PRIMIN = BAND_ARRAY, \ : .
OCTAVE_ARRAY,
STATE
)
\4ENDGRAPH J

The executable Ada program includes an Ada procedure that implements
sequences of domain primitive executions and manages intermediate data.
Execution sequences are deterministic for calling the input graph and GV set
members. Branching logic is included to select the particular sequence
dependent on the GVs passed to the executable in its execution call. The
execution sequences may be for a complete graph period (cycle) or a partial

58

period. If partial periods are implemented, the complete list includes the
sequence of parts needed to constitute a complete period and branching logic
to select the appropriate part.

GrTT executes on a SUN Workstation under Solaris 2.4. It has a standard UNIX
command line interface. Minimal interaction with the user is necessary once
GrTT is executing. The Ada source code produced by GrTT must be compiled
using the Alsys ObjectAda Compiler version 6.1 in order to correctly link with the
library of Ada algorithms provided with GrTT.

Restrictions on graphs that are to be translated into Ada source code are
minimal. The major restrictions are:

The input graph must be balanced.

At graph translation time, there must be sufficient information to determine an
execution sequence, and the amount of data produced and consumed by each
node must be known. Values for formal GIPs and VARSs, which are normally
provided at instantiation time, will be provided at graph translation time so that
these restrictions are met. This means that a graph's execution sequence
cannot be dependent on run-time data.

GrTT is based on a defined domain primitive library. This library provides a
standardized Application Programmers Interface (API) which is target
independent. The primitives in this library represent common signal processing
functions with a standardized calling sequence and standardized processing.
Because of the exacting nature of automated translation, a special database
which contains primitive information translated into a specific format is provided
with GrTT. The following primitives are included in the database provided with
the initial delivery of GrTT:

D_CAT
D_CDMF
D_CONJ
D_DMUX
D_EMC
D_FANIN
D_FANOUT
D_FFT
D_FIR1S
D_ITOR
D_LIN
D_MAG
D_MMULT
D_MTRANS
D_MUX
D_PWR
D_RTOI
D_SEP

D_STI
D_THRS
D_VADD
D_VDIV
D_VFILL
D_VINP
D_VMUL
D_VSuUB

Additional primitives will be added to the database. A list of currently identified
and specified domain primitives is provided in Section 3.4.

1.3 Document Overview

Section 3 of this document describes GrTT execution, including input, output
and processing options. Section 4 describes how to test GrTT produced source
code. The document assumes familiarity with the Processing Graph Method. It

is assumed that a user has a working knowledge of PGM programming that is
required to generate input graph specifications.

2. Referenced Documents

2.1 Government Documents
SPECIFICATIONS:

Processing Graph Method (PGM) Specification, 15 December 1987, Naval
Research Laboratory

STANDARDS:

Defense System Software Development, MIL-STD-2167A, 29 February 1988
Ada Programming Language, ANSI/MIL-STD-1815A, 22 January 1983
Copies of specifications, standards, drawings, and publications required by
suppliers in connection with specified procurement functions should be
obtained from the contracting agency or as directed by the contracting officer.
2.2. Non Government Documents

The following documents of the exact issue shown form a part of this
specification to the extent specified herein. In the event of conflict between the

documents referenced herein and the contents of this specification, the contents
of this specification shall be considered a superseding requirement.

60

"RASSP Primitive Library Standard (Preliminary)" dated 1 February 1995.
Management Communications and Control, Inc.

3. GrTT Execution

GrTT is a tool that supports the Processing Graph Method (PGM) by automating
the generation of an Ada implementation directly from a Signal Processing
Graph Notation (SPGN) form of a signal processing graph. It is necessary to
understand both GrTT and its role in PGM to make the most effective use of it.
This section describes how a user sets up and executes a GrTT translation.

The current version of GrTT uses the standard Unix command line interface with
optional parameters as specified in Section 3.3. GrTT requires two application
specific input files and access to the Domain Primitive database. Execution of
the Ada source code requires the Alsys ObjectAda Compiler and access to the
ObjectAda library of Domain Primitive executables. Both the database and the
ObjectAda library are provided with GrTT.

Input files are found using the "environment variable" mechanism supplied by
UNIX. The variables expected by GrTT include:

CM_SPGN_DIR (LOCAL_SPGN_DIR):

Points to the directory which holds configuration-managed (local) SPGN
graphs.

CM_GVS_DIR (LOCAL_GVS_DIR):

Points to the directory which holds configuration-managed (local) Graph
Variable sets.

CM_DP_DIR (LOCAL_DP_DIR):
Points to the directory which holds the configuration-managed (local)

domain primitive descriptions and their supporting files.

Note that GrTT's search order gives precedence to local areas over the
configuration managed ones. For example, if a user has their own copy of a
domain primitive and it is visible on the path specified by the environment
variable LOCAL_DP_DIR, the local copy will be used instead of the managed
one.

3.1 Input Data

The primary input to GrTT is a graph in the format of PGM. The graph is
specified in a file named graph_name.GNS. This file contains a description of
the graph expressed in Signal Processing Graph Notation (SPGN) which is the
language specified by PGM. Other inputs to GrTT are a graph_name.gvs file
which contains the values for the formal Graph Variables (GV) and Graph
Instantiation Parameters (GIP) used by the graph, and the database
descriptions of the domain primitives incorporated into the graph. The database
descriptions of some of the Domain Primitives are included with GrTT.

61

3.1.1 SPGN

The graph to be translated is specified using Signal Processing Graph Notation
(SPGN) as specified in the PGM Specification.

3.1.2 Graph Value Set

If the input graph has formal GIPs or GVs as inputs that are of integer mode and
these are parameters which can possibly impact the execution sequence, a file
containing the associated Graph Value Set(s) is required. The Graph Value Set
file must contain every set of values for the parameters that will be encountered
during the execution of the graph. Each Graph Value Set must contain a value
for each required formal GIP and GV, and each Graph Value Set must be
enclosed by brackets. Table 3.1 shows an example Graph Value Set file for a
graph with two formal GIPs that will accept one of two Graph Value Sets during
execution. Graph Value Sets can be used to create "vector NEP variables.”
When a graph contains nodes with variable NEPs, GrTT cannot under most
circumstances determine a static execution sequence and, hence, perform the
translation. However, GrTT can perform the translation for a graph with multiple
Graph Value Sets by creating multiple states, one for each GV set. This allows
the graph writer to have a finite number of Graph Value Sets or “vector NEP
variables."

Table 3.1 Graph Value Set

{
%GIP (NODD : INT INITIALIZE TO 2425)

- %GIP (FG1 :INT INITIALIZE TO0)
}

{
%GIP (NODD : INT INITIALIZE TO 2125)

%GIP (FG1 :INT INITIALIZE TO 1)
}

3.1.3 Database Elements

Each domain primitive that will underlie a node in a graph expressed in SPGN
that is input to GrTT must have an entry in the Database with information
pertaining to the Domain Primitive entered in a GrTT compatible format. The |
paths to a configuration managed directory and to a working version directory of

the Database must be specified prior to GrTT execution. Table 3.2 shows the

statements used in a .login file to specify the database being maintained on one

computer. (This is done as part of the delivered GrTT script, see the next

section.)

62

Table 3.2 Specifying Database

setenv CM_DP_DIR "/home/crobbins/dp"
setenv LOCAL_DP_DIR “./* # or other directory as needed

The CM_DP_DIR refers to the location of a configuration managed directory
which should be the path to the database delivered with GrTT and which may
contain additions added by the user. The LOCAL_DP_DIR is a working
directory to which the user may add new Domain Primitives temporarily subject
to the Configuration Management plan of their project. The GrTT program will
first search the LOCAL_DP_DIR and then the CM_DP_DIR for the database
element required.

3.2 Output
The following output files are produced by GrTT:

The Ada produced source code file which can be compiled in conjunction with
the delivered library of Ada algorithms that implement core signal processing
routines.

An Ada wrapper that provides for file I/O for reading input data for each input
queue and graph variable and writes output data for each output queue and
graph variable.

In addition, supplemental outputs, ECOS_GRAPH.LOG and OUTPUT.LOG are
produced. These files contain detailed processing information that is used for
debugging GrTT. Some of the debug information may be useful for analyzing

graphs and the graph translations.

3.3 Command Line Processing Options

GrTT is initiated by a command line which specifies the SPGN and GVS input
files as enumerated in sections 3.3.1 and 3.1.2. If the two files have the same
name as the graph name with a .GNS file extension for the SPGN input and a
.gvs file extension for the GVS input, the command may simply read:

grtt -g graph_name

GrTT will automatically generate the file names from the graph name and
search the appropriate library paths for the files. The library paths for the SPGN
files are as follows: .

setenv CM_SPGN_LIB "“/home/crobbins/graphs”

setenv LOCAL_SPGN_LIB "./* #or other directory as needed

63

- Alternatively, if the file names differ from the graph name, the .GNS file and the
.gvs file can be specified on the command line as follows:

grtt -f <any_path/name.GNS> -v <any_path/name.gvs>

Finally, a "usage" mechanism is available which provides an overview of
available options from the command line:

grtt -h

3.4 Domain Primitives

Domain Primitives represent target independent signal processing functions.
These functions represent the building blocks for constructing Application
Graphs.

A Domain Primitive has three main components: 1) a description that identifies
the inputs, output, and processing that are implemented by the primitive, 2) an
Ada algorithm that represents the processing implemented by the primitive, and
3) an Autocode Interface that provides a representation that is required for the
Autocode tools.

3.4.1 Domain Primitive Description

The Domain Primitive Description is a textual representation of the primitive that
provides the information an Application Developer requires in order to
incorporate the primitive into an application graph. This information is
partitioned into the following sections:

a) Title

b) Functionality

c) Algorithm

d) Input/Output Restrictions
e) Production Function

f) Parameter List

g) See Also

4
Each of these sections are described below. 4

3.4.1.1 Title

The Title Section is normally a single line containing an acronym for the
primitive and a descriptive title. By convention the acronym starts with “D_."
The acronym must be unique within the domain primitive set.

3.4.1.2 Functionality

The Functionality Section consists of a textual description of the processing
performed by the primitive. Normally, this is a one or two paragraph overview.

3.4.1.3 Algorithm
The Algorithm Section contains a pseudocode representation of the primitive.
The pseudocode should include textual comments. Variables that are not

formal parameters should be named with meaningful titles such as "number of
executions.”

3.4.1.4 Input/Output Restrictions
The Input/Output Restrictions Section describes any restrictions on the

input/output parameters. This includes allowable combinations of modes. The
default values of any optional parameters are specified in this section.

3.4.1.5 Production Function

The Production Function Section contains expressions for determining the
number of output points produced by an execution of the primitive. The
expression is normally in terms of the input parameters.

3.4.1.6 Parameter List

The Parameter List Section lists each of the inputs and each of the outputs
indicating whether the parameter is required or optional, the use of each
parameter (e.g. Number of time samples in input) and the permissible mode(s)
of the parameter (int, float, etc.)

3.4.1.7 See Also

The See Also Section is used to refer the User to similar primitives or primitives
that are incorporated into this primitive.

3.4.1.8 Example of Domain Primitive Description

The following is an example of a Domain Primitive Description. The Domain
Primitive is a one stage fir filter.

D_FIR1S Finite Impulse Response Filter, Single-stage

65

Functionality

This primitive implements a single-stage finite impulse response filter with NT
taps and D:1 decimation. The input consists of a (possibly multiplexed) time series
of vectors; if the input is multiplexed the output is also a multiplexed series. If NT
> D, the primitive assumes an initialization of MX*(NT-D) elements when the graph
begins execution, where MX is the number of time series in the input. it is the
user's responsibility to ensure that there is initialization data for each execution
of the primitive. The primitive requires an array of NT filter weights.

Algorithm

If the filter weights and the input elements are not of the same precision, the
lesser-precision elements will be converted to their greater-precision forms.

If NT>D
number of executions (NE) = (ream(X)/MX - (NT-D))/(N - (NT-D))
amount of input data processed = (N + (NE-1)*(N-(NT-D)))*MX
slide between executions = (N - (NT - D))*"MX

else
number of executions (NE) = ream(X)/(N * MX)
amount of input data processed = NE * N * MX
slide between executions = N * MX

Considering the input to be a contiguous string of data:

N = number of intrinsic elements in one processing vector (for one time
series), including overlap if present
NT = number of taps

D decimation factor
MX = number of time series in input
A weights array

M integer((N-NT+D)/D) (output elements per execution)
forne =1 .. NE
for mx = 1 .. MX
k = mx
form=1. M
Y((ne-1)*M*MX + (m-1)*MX + mx) = 0
fornt=1. NT
Y((ne-1)*M*MX + (m-1)"MX + mx) =
Y((ne-1)*"M*MX + (m-1)*MX + mx) +
A(NT+1-nt)*X((ne-1)*slide*MX + k + (nt-
1)*MX)

k = k + D"MX

If the output is not of the precision in which the calculations are done, the proper
conversions are performed.

10
66

“Input/Output Restrictions

The allowable combinations of input, filter weight and output types are as follows:

X A
Y
CFLOAT/DCFLOAT FLOAT/DFLOAT CFLOAT/DCFLOAT
FLOAT/DFLOAT FLOAT/DFLOAT FLOAT/DFLOAT
FLOAT/DFLOAT CFLOAT/DCFLOAT CFLOAT/DCFLOAT

The output may be vector or any-dimensional array, as long as there is an integral
number of transfer elements in the output.

If MX is unspecified, it is defaulted to 1.
If D is unspecified, it is defaulted to 1.
(N-NT) mod D =0.

In the case of data overflow, the element will be set to the largest (or smallest)
representable value of the type involved.
In the case of data underflow, the element will be set to zero.

Production Function

Vector output
The production function for Y is
If NT>=D
MX*((ream(X)/MX - (NT-D))/D)
else
(ream(X)/N)*(N - NT + D)/D

Array output
The production function for Y is
INT>=D
(MX*((ream(X)/MX - (NT-D))/D))/arraysize(Y)
else
((ream(X)/N)*(N - NT + D)/D)/arraysize(Y)

Parameter List

Inputs
N Number of intrinsic elements in processing vector
(including overlap amount)
Int
optional MX Number of time series in input
int
NT Number of taps
Int
optional D Decimation factor
Int
11

67

A Filter weights array (size NT)
Floatldfloatlcfloatldcfioat

X Vector input
Floatldfloaticfloatidcfioat

Outputs

Y Vector/array output
Floatidfloaticfioatidcfloat

See Also

3.4.2 Domain Primitive Ada Algorithm

The Domain Primitive Ada Algorithm is source code that performs the numerical
processing of the primitive. It consists of an Ada Specification and an Ada
Body. The Ada algorithm is normally composed of a number of overloaded
procedures that correspond to the different input and output modes of the formal
parameters.

The Ada Specification is normally implemented as an Ada package named with
the acronym of the domain primitive. This acronym is unique amongst the
domain primitive set. The package must "with" the packages that contain the
data structure formats for the PGM intrinsic modes that can be used as input
and/or output modes of the data.

Also included in the specification is the declaration of the procedures which
implement the various permissible input and output data modes. By convention
all of these procedures are named "Prim." These procedures are overloaded
based on actual usage of the primitive.

The Ada Body contains the code for each of the procedures specified in the Ada
specification. Each of the procedures implements the processing embodied in
the domain primitive including any mode conversions required to format the
input and/or output data.

3.4.3 Domain Primitive Autocode Interface

The Autocode Interface component of a Domain Primitive refers to the database
element that describes the Domain Primitive in a format which is consistent with
GrTT processing. It contains five major sections: 1) the declaration section
where the data structures are defined and attributes are specified, 2) the file
reference section of a domain primitive which specifies the names of a
description file and algorithm file which must be defined for each domain
primitive, 3) the produce amount calculation, 4) the timing estimate expression
calculation which provides the theoretical Mega-Flops required for any valid

12
68

combination of parameter values and data modes, and 5) one or more error
check sections for formal parameters.

The syntax for constructing Domain Primitive Autocode Interface is defined in
"RASSP Primitive Library Standard (Preliminary)" dated 1 February 1995.

An example of Domain Primitive Autocode Interface for the domain primitive
D_FIR1S is contained in that document.

3.4.4 Preliminary Initial Set of Domain Primitives

The list of domain primitives selected as a preliminary initial set is shown in the
following table. Detailed User descriptions of each of these primitives can be
found in Appendix A to Domain Primitive Library Specification. A copy of this
Appendix is available upon request from Management Communications and
Control, Inc. (MCCI), 2000 North Fourteenth Street, Suite 220, Arlington, VA
22201.

Vector Mode Conversions

1 |D.CTOR complex | real Q003, |complex vector part separation
M860
2 | D_RTOC real complex M860 real vector combination to complex
vector
3 |D_EMC int, int, v | Qoos, mode(and precision) conversion
real, real, M860
complex | complex
4 | D _RTOI real int v convert real vector to integer vector
5 |D_ITOR int real v convert integer vector to real vector
Vector Binary Primitives
6 |D_VADD [int, int, v [@003, |Vector-vector add
real, real, M860
complex | complex
7 | D_VDIV int, int, v |Qo003, |[vector-vector divide
real, real, M860
complex | complex
8 |D_VMUL int, int, v | Q003, |vector-vector multiply and complex conj
real, real, M860 mult
complex | complex
9 |D_vsuB int, int, vV | o003, |vector-vector subtract
real, real, M860
complex | complex
10 | D_VINP int, int, v | @003, |vector-vector inner product
real, real, M860
complex | complex
13

69

Vector Comparison Primitives

11 | D_CTH2 int, real|int, real Q003, vector compare and threshold > or <
M860 mean_vector
12 | D_DIFM int, int, Q003, |vector compare and difference
real, real, M860
complex | complex
13 | D_THRS int, reallint, real QO003, |vector threshold
M860
Vector Unary Primitives
14 | D_CONJ complex | complex Q003, |complex vector conjugate
M860
15 | D_PWR complex | real QO003, |complex vector power conversion
M860
16 | D_ATAN2 |real real Q003, |arctangent of two vector inputs over [0-
M860 27]
17 { D _SINE real real M860 vector sine
18 | D COS real real M860 vector cosine
19 | D_TAN real real M860 vector-vector tangents
20 | D_INDX real real Q003, vector gather, output selected by control
M860 index vec
21 |D_LIN real real QO003, vector linear scaling [Ax+B]
M860
22 |D_LOG real real QO003, |vector log [AlogB(X)+C]; B = 2,10
M860
23 | D_MAG real real QO003, |vector magnitude
M860
24 | D RECIP real real M860 vector reciprocal
25 | D_vCC2 real real Q003, |vector upper and lower threshold
M860 compare & clip
26 | D_SQRT real, real, QO003, |vector square root
complex | complex M860
27 |D_SQR real, real, M860 vector square
complex | complex
28 |D_ZCC real real Q003, |vector zero crossing counter
M860 '
29 | D_VFILL int, int, QO003, vector fill with pad elements
real, real, M860
complex | complex
30 |D_CPLR complex | complex M860 convert rectangular coordinates to polar
form
31 | D_RECT complex | complex M860 convert polar coordinates to rectangular
form
14

70

Matrix Operations

32 | D_MMULT |real, real, v [M860[r | matrix-matrix multiply
complex | complex eall
33 | D_MTRANS | real, real, v |M860[r | matrix transpose
complex | complex eal]
34 | D_MINV real, real, M860[r | matrix invert
complex | complex eal]
Data_Conditioning Primitives
35 | D_AVG1 real real QO003, vector average
M860
36 | D AVGN real real Q003 vector block average
37 | D_AVGEXP |real real M860 vector exponential average
38 | D_DEC real, real, Q003, |vector decimate
complex | complex M860
39 | D_EAVN real real Q003 exponential block averaging filter
40 | D FRQW complex | complex Q003 complex frequency weighting
41 | D FRQWC |complex | complex Q003 Proportional resolution frequency
weighting
42 | D_HAMN complex | complex Q003, |Hamming or Hanning weighting
M860
43 | D_LINT real real Q003, |linear interpolation
M860
44 D MEF real real Q003 Mean estimation in frequency
45 | D MET real real Q003 Mean estimation in _time
46 | D_MWAG real real Q003, |Sliding window average
M860
47 | D_MWGT complex | complex Q003 Multiplex weighting
48 1 D NME real real Q003 three pass noise mean estimation
49 | D_NORM3 |real real Q003 three pass noise mean estimation
50 | D SMERGE | complex | complex Q003 concatenate data from multiple queues
51 | D_SPL real, real, Q003 split spectral data into sub bands
complex { complex
52 | D_STI real real v 1 Q003 block averager
53 | D_TSS real, real, Q003, Time series mean, variance,standard
complex | complex M860 deviation
54 | D_VDI real real Q003 Variable diagonal averager
Data Format Conversion Primitives
55 | D_CAT real, real, v | Qoo3 vector concatenate
complex | complex
56 | D_DMUX real, real, v | Qoo3 vector demultiplex
complex | complex
57 | D_DSD real real Q003, |data scaling
M860
15

71

58 | D FLOC real, real, Qo003 flow control
complex | complex
59 | D LRQT real real Q003 vector requantization with clipping
60 | D_MUX real, real, v 1 Qoo3 vector multiplex
complex | complex
61 | D REORD complex | complex Q003 reorder and cell selection
62 |D_REP real, real, Qo003 replicate
complex | compiex
63 | D REQV real real Q003 requantization
64 | D_SCAT int, int, Qo003 selective concatenate
real, real,
complex | complex
65 | D_SEP int, int, v | Qoo3 vector separate
real, real,
complex | complex
66 | D_SWTH int, int, Qo003 switch
real, real,
complex | complex
67 | D_VCAT int, int, Q003 v_array concatenate
real, real,
complex | complex
68 | D_VREP int, int, Qo003 v_array replicate
real, real,
complex | complex
69 | D_FANOUT 1int, int, vV | PIDGen | vector fanout to designated output queues
real, real,
complex | complex
70 | D_FANIN int, int, vV | PIDGen |vector fanin from designated input queues
real, real,
complex | complex
FFTs
71 | D_FFT real, real, v QO003, FFT forward and reverse
complex | complex M860
72 | D_FFT2D real, real, M860
complex | complex
Filters
73 | D_FIR1S real, real, v 1 Qoos, 1 stage finite impulse response filter
complex | complex M860
74 | D_FIR2S real, real, Qo003 2 stage finite impulse response filter
complex | complex
75 |D_IIR1S real, real, Q003, |general infinite impulse response filter
complex | complex M860
16

72

Demodulation and Bandshifting Primitives

76 { D_CDMF real, real, v [Qoo3 demodulation fixed frequency
complex | complex
77 | D_CDMV real, real, Q003 demodulation variable frequency

complex | complex

complex | complex

78 | D_CDMFIR |real, real, Q003 demodulate fixed frequency and FIR filter

Convolutions

79 | D CONVL real real M860 time domain convolution
80 | D_CCONVL |real, real, QO003, circular convolution
complex | complex M860

Image processing

81 | D_CONV2D | real real M860 3x3 or 5x5 2 D convolution

82 |D SPIN real real M860 image rotate scale and transiate

Beamforming Primitives

r83 ID_BFRF Icomplex |comp|ex| | Q003 | Frequency domain beamforming

(1) Vectors may include n dimensional arrays where
appropriate
(2) ¥ indicates Ada routine implementing domain primitive is a GrTT deliverable

4. Testing GrTT Output

All input data files must be created. A separate input data file is required for
each input queue and each graph variable. The name of the input file must
currently be the name of the formal input queue (in upper case letters)
appended with ".dat." There will be an output file created for each formal output
queue. The output file will be named "queue_name.dat." The input data files
must reside in the current directory when executing GrTT. All output files will be
created in the same directory. The output files are compared with data from a
previously verified test simulation.

GrTT produces an Ada program which, after compilation, will execute the
compiled GrTT produced Ada code that implements the translated graph. This
test program reads data from files, executes the code and then writes the output
data to files, one for each output entity.

17
73

5. Examples

The software delivery tape contains three examples. These are p_azidj,
p_rangej, and p_rangej_c1_7. After the software has been properly installed
including the setting of environment variables, the user can copy the ".GNS"
and the “.gvs" files from the examples subdirectory to a working directory. The
example can then be translated by entering the following command line:

grtt -g *"graph_name"
where "graph_name" is the name of one of the examples.
The translation will produce the following Ada source code files:

graph_name_.ada -- the Ada specification for the translated graph
graph_name.ada -- the Ada body for the translated graph
graph_name_test.ada -- an Ada program to test the translated graph

The examples should translate correctly. By executing the (compiled) test
program on the data files contained in the examples subdirectories, the user
can test for correct translation. The output data files contained in the directory
for the particular example has been validated for the input data included with
the example.

If errors occur during the translation of a graph, error messages will be issued to

the user. These messages include the type of error. The user can locate the
source of the error by examining the following files:

File Error Type

spgn_yacc.lis SPGN errors in the input graph, node
parameter errors

gvs.lis Graph Value Set errors

primitive.lis Primitive parameter errors

name_db_parser.lis | Attempt to call non-existent primitive

ecos_graph.log Information pertinent to execution of the
graph being translated. Useful for identifying
NEP errors.

18

74

